
Encapsulation or Availability
On the Combination of Objects and Relations in Systems

Development
Pär J. Ågerfalk

pak@esa.oru.se
Dept. of Informatics (ESA)

Örebro University, SE-701 82 Örebro, Sweden

Abstract
This paper addresses the issue of combining object-orientation with relational
database technology. It is an attempt to clarify the difficulties faced by developers
when such a combination is used. The object-oriented model and the relational
model, and their ontological assumptions are investigated and different approaches
to combining them are described and elaborated. The discussion is mainly carried
out at a conceptual level, although related technological issues are mentioned
where appropriate.

Keywords: Object-orientation, relational databases, systems development, RAD-tools,
object-relational databases.

BRT Keywords: FA, FC, CB06

Introduction

Nowadays it is quite common to perform enterprise modelling as well as analysis and
design of information systems by use of object-oriented methodology (e.g. Jacobson et
al., 1995). An often-used argument for such an approach is that object-orientation is
supposed to imply a transparent and seamless transformation from analysis, through
design to technical implementation. Seamlessness is supposed to be achieved by
recognizing that the objects identified during analysis are the same objects that exist in
the produced software system. If systems are built with “true” object-oriented databases,
i.e. by use of what Cattell (1994) refers to as object-oriented database programming
languages, e.g. Objectstore (Object Design, 1990), Gemstone (Bretl et al., 1988), such
seamlessness might be achievable. The problem is that relational technology often serves
as the foundation for business information systems. One reason for this is that relational
databases constitute a well-tried and reliable technology that is supported by a vast
number of popular development tools. Another problem is that new systems often need to
exchange information with legacy systems that are constructed using relational databases.

Nevertheless, a new software client application might be constructed according to
the principles of object-oriented programming and design, neglecting the underlying data
structures at early stages of development. An example of this is the popularity (or even
domination) of object-oriented tools for graphical user interface programming. This leads
to the fact that developers need to change perspective at some point in the development
lifecycle—from an object-oriented worldview to a relational—or at least manage to
combine the two. Recent approaches to multi-tier architectures and component-based

development do not seem to solve this necessary shift in perspective. Hence, developers
must both understand, and be able to cope with, the differences in the two models in
order to construct information systems that make use of both. This issue ought to be
relevant with respect to most visual object-oriented and object-based tools (RAD-tools),
such as Borland Delphi, MS Visual Basic, et cetera, as well as to more traditional object-
oriented development with, for example, Smalltalk, C++ or Java.

Why, then, is this a problem? Is it the case that there are foundational differences
between the two models’ perspectives and underlying assumptions, which make them
incompatible? Or is it just a question of scientific and practice maturity?

The aim of this paper is to describe, elaborate and reflect upon prevalent theories
and techniques for combining object-oriented technology with relational technology. The
contribution of the paper is threefold. First, it gives an overview of different techniques
for combining relational and object-oriented technology, and reflects upon why the two
models are hard to combine. Second, it provides a simple conceptual framework for
classifying object-oriented systems that might be useful for developers when, for
example, integrating new object-oriented systems with legacy relational systems. Third,
and perhaps most important, it exemplifies elaboration on the theoretical foundations of
technological approaches and in doing so indicates a need for developers to investigate,
and ultimately understand, underlying ontological assumptions in order to be successful
in practice.

Only the theories (models) as such have been studied and not, for example,
different theories of information systems structuring that are closely related to each model
(e.g. the relationship between Information Resource Management (IRM) and relational
databases).

The paper is organized as follows. Firstly, the models are treated independent of
each other. Secondly, different techniques for combining them are discussed. Finally,
some conclusions and reflections are given.

The work has been performed mainly through studies of the literature. The
analysis is based on what each source has emphasized and is qualitative in nature. The
meta-modelling approach MA/SIMM (Goldkuhl and Fristedt, 1995) has been used as an
aid during analysis and structuring of the results.

The Relational Model

This section elaborates on the relational model (RM) of data, which originates from the
work by Codd (1970). The treatment is far from complete—only concepts that are of
importance for this paper are presented and discussed. The chapter is based on Elmasri
and Navate (1994) where not otherwise stated.

Goals and Perspective of the RM

The main goal of the RM is to offer a theory of databases, based on a solid mathematical
foundation. Hence, inherent in the model is a formal and mathematical perspective. The
mathematical theory underlying the RM is relational theory. Since mathematical
relational theory, in turn, is based on set theory, the relational model is heavily set-
oriented. The idea of the model is to decompose data into its smallest parts and to
separate data completely from functionality. Strictly, functionality is not even a part of
the formal model. However, when the relational model is applied, a main assumption is

that data is stable and persistent, whilst the use of data is contingent and volatile.
Availability and semantics-free representation of the data is therefore of great importance.
Another important issue is data independence, i.e. allowing changes in data organization
without affecting application programs (Cattell, 1994). In the RM, data are traditionally
viewed at three distinct levels, referred to as the three-level architecture for database
systems (Tsichritzis and Klug, 1978). The three levels are: 1) internal (or physical):
addressing the organization of data on a physical storage medium; 2) conceptual:
addressing entities and relationships; and 3) external: addressing the interpretation of data
by an application.

With such a three-level architecture, data independence means that 1) the
representation at the conceptual level can be changed without affecting the external level,
and 2) the representation at the internal level can be changed without affecting the
conceptual level, and hence without affecting the external level. This means, for example,
that entities may be added without affecting existing applications, and that the physical
organization of files may be changed without affecting the conceptual model, and hence
without affecting applications relying on that model.

Concepts of the RM

The four most central concepts of the relational model are, according to Elmasri and
Navathe (1994): the domain, the tuple, the attribute and the relation. As indicated in the
previous sub-section, the concept of relation originates from mathematics. As in
mathematics, a relation R ⊆ S1 × S2 × … × Sn is a subset of the Cartesian product of one
or more sets. A relation is thus a set of n-tuples consisting of elements from the n sets
participating in the relation. In the RM, such sets, with atomic elements, are referred to as
domains. An attribute is the name of the role a certain domain plays in a given relation.
This way, a relation can be used as a data structure representing a number of related
properties that together describe some aspects of some entity (concrete or abstract). A
relation might, for example, be used to describe relevant properties of people. Each single
person is then represented by a tuple in the relation and, for example, (Sam, 28, Male)
could be the representation of a person Sam who is a 28-year-old male. A relation can
thus be viewed as the set of all tuples belonging to that relation. The term table is often
used to talk about relations. Date (1991) clarifies this terminology by stating that
“relation” is an abstract theoretical concept, while “table” is its concrete representation.

For example, assume a relation Persons = {(Peter, 25, Male), (Maria, 23,
Female), (Linda, 24, Female)} that represents three people. Persons is thus defined as
being a subset of the Cartesian product of the sets of all possible names, ages and sexes.
This relation can be expressed as a table showing both tuples and attributes, as shown in
Table 1.

Name Age Sex
Peter 25 Male
Maria 23 Female
Linda 24 Female

Table 1: A relational table describing persons.

The concept of relation is also used to relate relations (describing entities) to each
other. Suppose that the problem domain also contains cars, described by the relation Cars
⊆ RegNo × Colour, which are owned by people. It is now possible to define a relation

Owns ⊆ Persons × Cars, such that Owns = {(Peter, ADB123), (Linda, FEK456)}. This
relation, from Persons to Cars, is thus describing the circumstance that Peter owns a car
with registration number ADB123, etc.

An important aspect of the RM is the concept of the integrity rule. There are two
different integrity rules: entity integrity and referential integrity. The entity integrity rule
states that each tuple of a relation must be uniquely identifiable. That is, there must exist
a combination of one or more attributes that uniquely identifies each tuple in a relation.
The collection of such uniquely identifying combinations of attributes of a relation is
referred to as the relation’s candidate keys, of which one is selected as the primary key.
The referential integrity rule states that, when a relation relates relations, a foreign key
must always have a value that is to be found as a candidate key in the related relation or
be NULL. The value of a foreign key is thus selected from the same domain(s) as a
candidate key (usually the primary key) in the related relation. In the example, the
attribute Name is used as primary key in the Persons relation and RegNo in the Cars
relation. The entity integrity rule thus implies that there can be no more than one Peter,
no more than one Linda, et cetera. The referential integrity rule, in turn, implies that a
tuple (Jane, STA789) cannot be a part of the relation Owns, since there is at present no
tuple in Persons identified by the name Jane. On the other hand the tuple (Maria, NULL)
∈ Owns is conformant to the rule, stating that Maria has no car. Note that this assumes
that the first attribute of the relation Persons (i.e. Name) uniquely identifies the tuples of
that relation (as stated above), otherwise this would violate the entity integrity rule since
part of the primary key would be NULL. Furthermore, another tuple in Owns could be
(Peter, NEK010), describing that Peter owns two cars.

Another central concept of the RM is that of a relation’s normal form. The normal
form concerns how attributes of a relation functionally depend on each other. An often-
used rule of thumb is that each relation should be in, at least, the third normal form. If in
third normal form, each attribute of the relation is functionally dependent on the key, the
whole key and nothing but the key. The main purpose of normalization is to reduce
redundancy in the data representation, or as Connolly et al. (1999, p. 221) put it:
“Normalization is a technique for producing a set of relations with desirable properties,
given the data requirements of an enterprise.”

Figure 1 shows how these concepts are related to each other (the arrows in the
figure are used to indicate intended direction of reading).

&RPELQDWLRQ

RI

,V LQ

&DUWHVLDQ

SURGXFW RI

&RQFUHWH

UHSUHVHQWDWLRQ

RI

6HW RI

$WWULEXWH 3ULPDU\ NH\

7DEOH

'RPDLQ 7XSOH

5HODWLRQ1RUPDO IRUP

5ROH RI ,GHQWLILHV

'HFLGHG E\

IXQFWLRQDO

GHSHQGHQFLHV

EHWZHHQ

)RUHLJQ NH\

5HIHUHQFHV

RWKHU UHODWLRQV·

,QWHJULW\ UXOHV

&RQVWUDLQ YDOXHV RI

Figure 1: Central concepts of the RM.

Relational Databases and Query Languages

Any database that is founded on the RM is referred to as a relational database. Thus, a
relational database supports definitions of domains and relations as well as the
implementation of integrity rules. Most relational databases are defined and manipulated
by use of the query language SQL (Structured Query Language). SQL is a (almost)
declarative language based on the relational calculus, which is a mathematical theory for
manipulation of relations. Declarative means that a programmer is allowed to express
what is to be done without specifying how. Instead, query optimization and construction
of the actual algorithm used to fetch data from the database are performed by a relational
database management system (RDBMS). A query is formulated as logical statements in
SQL and the system returns data that match the query. A query might concern several
tables and is not necessarily pre-specified (compiled). This facilitates formulation of so
called ad hoc queries, useful when information requirements change in the supported
business.

Summary of the RM

The basic ontological assumptions of the RM seem to be that information can be
represented as data and that data can be decomposed and normalized into atomic terms
constituting domains. How these terms are actually used to combine information is an
application-specific property and consequently not part of the model per se.

To summarize, the relational model:

• Is theoretically founded on relational theory and set theory.
• Implies decomposition of data into its smallest constituents.
• Separates data from functionality.
• Emphasizes flexibility and availability of data.

 The object-oriented model

 This section elaborates on the object-oriented model (OOM). As in the previous
treatment of the relational model, only concepts that are of importance for this paper are
presented and discussed.

 Goals and perspective of the OOM

 Object-orientation lacks a rigorous theoretical foundation corresponding to the relational
theory of the RM. Instead, practitioners have forced the development of object-
orientation, which has resulted in a vast number of different pragmatic solutions (Britts,
1997). The most related theory is probably that of Langefors (1966), since a sharp
distinction is made between systems’ (objects’) internal and external properties (cf.
Langefors, 1995). Another similarity with Langefors’ theory is the top-down approach of
decomposing systems into sub-systems.

 The OOM encompasses a strong descriptive perspective. That is, the objects of
the system shall have counterparts in the problem domain (the business) that the system
describes. This perspective might be related to the fact that the OOM originated in object-
oriented programming, which in turn has been influenced by the language Simula, a

language specially designed for simulations (Dahl et al., 1968). Thus, the software system
is viewed as a simulation of reality. It is important to notice that the descriptions (system
counterparts) of real world occurrences correspond to both data and functionality
(sometimes referred to as knowledge and behaviour).

 Increased reuse is often stressed as an advantage of object-orientation. The
argument is that since the software objects correspond to real world occurrences, these
ought to be reusable in all systems within the same domain (e.g. Sims, 1994).

 Concepts of the OOM

 It is quite common to talk about the “three cornerstones of object-orientation”:
encapsulation, inheritance and polymorphism (e.g. Olsson, 1991). Encapsulation means
that data and functions operating on those data are bundled together to form coherent
objects. Data can thus be protected from misuse, but are also hard to access and
restructure if information requirements change. Inheritance means that adding new data
or functionality to existing object-types (classes) can be used to create new ones, co-
existing with the originals. The new class (the sub-class) thus inherits the properties of
the existing class (the super-class). Note that this is not inheritance in the legal sense
when an ancestor dies, but in the sense that a son, for example, inherits some physical
attributes of his father without physically removing them from him. In the OOM, a
system is viewed as a set of collaborating objects. Objects sending messages to each
other, and thus synchronizing their behaviour, constitute such collaboration.
Polymorphism means that every given object (instance) of a sub-class understands
messages intended for its super-class, and hence is able to receive and react upon them.
The communication of messages is usually implemented as method calls, i.e. the sending
object calls one of the functions associated with the receiving object.

 Figure 2 shows how these concepts are related to each other (similarly to Figure 1,
the arrows in the figure are used to indicate the intended direction of reading).

,QKDELWV

,QKDELWV

,V LQVWDQFH RI

&RPPXQLFDWHV

(QDEOHV VXE WR
DFW DV VXSHU

+LGHV LPSOHPHQWDWLRQ GHWDLOV RI

&UHDWHV QHZ

VXE DV H[�
WHQGHG VXSHU

5HSUHVHQWV

2EMHFW

3RO\PRUSKLVP

&ODVV

0HWKRG

,QKHULWDQFH

(QFDSVXODWLRQ

%HKDYLRXU

.QRZOHGJH

'DWD

5HSUHVHQWV

0HVVDJH

5HVSRQVH WR

 Figure 2: Central concepts of the OOM.

 Object databases and Query Languages

 There are two different types of object databases (Cattell, 1994). The first type is usually
referred to as an object-oriented database or object-oriented database programming
language. An Object-oriented database is basically a programming language (usually
C++ or Smalltalk) that has been extended with database functionality. By explicitly
stating in the source code that an object shall be persistent, its data is stored in the
database. Storing and retrieving of data is then handled by an object-oriented database
management system (OODBMS). This way, persistent objects can be treated in the same
way as transient objects and referenced by using traditional pointers. Conversions
between main memory addresses and disk representations are thus handled transparently
by the OODBMS.

 A problem of object-oriented databases is the lack of declarative query languages.
Instead, queries must be coded in the particular programming language used, without
explicit support from the system. Another problem is that of insufficient performance of
current object databases for typical business applications. This problem is partly related
to the previous in that ad hoc queries, common in business information systems, are hard
to support efficiently. However, Cattell (1994) provides evidence based on benchmarking
that an OODBMS might perform as well as, or even better than, an RDBMS for
engineering applications such as computer aided design (CAD), although he admits that
the results can be attributed to architecture-based, rather than model-based, differences.

 The second type of object database is the object-relational database, also referred
to as the hybrid database (Berild, 1996) or the extended relational database system
(Cattell, 1994). Such a database is founded on the relational model but has several object-
oriented extensions, e.g. support for object identifiers, inheritance, and methods on
objects. To support object-relational databases, new generations of SQL (SQL3 and
SQL4) have been developed (Connolly et al., 1999).

 Stonebraker (1990) shows the relation between different kinds of database
systems as shown in Figure 3.

1R TXHU\

4XHU\

6LPSOH GDWD &RPSOH[GDWD

5HODWLRQDO
'%06

2EMHFW�

UHODWLRQDO
'%06

)LOH V\VWHP
2EMHFW�
RULHQWHG
'%06

 Figure 3: Classification of database systems according to Stonebraker (1990).

 Summary of the OOM

 The basic ontological assumption of the OOM seems to be that things (entities),
possessing knowledge and behaviour, constitute the world. Consequently, there is no
point in decomposing information into smaller atoms than those corresponding to such
things, since the behaviour is related to the thing and not to the atomic data. To
summarize, the object-oriented model:

• Lacks a theoretical foundation, which has led to pragmatic solutions.
• Implies decomposition of systems into sub-systems where each sub-system

corresponds to a simple concept in the problem domain.
• Treats data and functionality as non-separable wholeness.
• Encourages control and encapsulation of data.

Techniques to Combine Objects and Relations

In this section some prevalent techniques and approaches to combining objects and
relations are presented and elaborated.

Using both a relational and an object-oriented database

One obvious way to obtain the advantages of both object-oriented databases and
traditional relational databases would be to use one of each. An object-oriented database
could then be used for object-oriented systems and a relational database for ad hoc
queries and legacy systems. However, to manage this, replication is needed to maintain
consistency between the two systems, which might be embedded in object- or
component-oriented middleware. This does not, however, solve the problem of
perspective change.

Mapping classes to relations

If an object-oriented model is to be represented in a relational database, a conversion to a
relational database schema must be performed. The easiest way to perform such a
conversion is to let each class be represented by a table, i.e. a one-to-one mapping. The
data members of the class thus become attributes of the corresponding table. In some
cases, the resulting tables must then be further normalized. When the object-model
consists of inheritance, there are some alternative designs that must be considered (cf.
Blaha and Premerlani, 1998). One approach is to map an entire inheritance hierarchy into
a single table. Such a solution is straightforward, but yields many NULL values in tuples
representing super-class objects. Another approach is to create one table for each class
and let sub-class tables contain only attributes introduced at that level in the hierarchy. In
the latter case, all tables representing the inheritance hierarchy must have the same
attribute as primary key to enable simple joins. An alternative to the latter approach is to
“push down” super-class attributes and let each sub-class table consist of all attributes
belonging to that class, including inherited ones. In all cases, some inheritance semantics
are lost in the transformation and must be handled by an application or, for example, as
stored procedures or triggers. The same counts for the methods of the classes, whether
inherited or not.

Architectural Styles

It is possible to distinguish two main principles for the design of object-oriented systems.
The first principle is the one used by most 4GL tools. It is characterized by the use

of an object-oriented interface between the application and the relational database (cf.
“Microsoft Data access objects” subsequently). With this architectural style, the objects

corresponding to the problem domain (domain objects for short) are not represented in
clients’ address spaces at all. Instead, the objects that execute in the clients’ address
spaces represent the database’s tables, stored procedures etc. These objects are, typically,
manipulated by the same functions and event handlers that are used to control the
graphical user interface (GUI), e.g., with Borland Delphi the GUI objects are directly
connected to these object-oriented representations of the database.

The second principle is to handle the domain objects in the application and
maintain a mapping to these objects’ representations in the database. How the mapping is
implemented depends on the kind of database being used. As mentioned in section 3,
with a pure object-oriented database the mapping is handled transparently by the
OODBMS. If a relational database is used, on the other hand, the objects in the client
must be able to fetch information about themselves from the database. An object-oriented
interface encapsulating the tables of the database might also be used for this purpose (cf.
the section “Object interfaces” subsequently).

As mentioned above, an alternative to relational databases and object-oriented
databases is the object-relational database. With an object-relational database some of the
domain objects, whole or in part, might execute in the database or in the clients’ address
space. However, the problem of mapping programming language objects to their query
language representation, usually referred to as impedance mismatch (Cattell, 1994), exists
with the use of either relational or object-relational databases.

Microsoft Data access objects

As an example of encapsulation of the relational database structure, we present
Microsoft’s “Data access objects” (DAO), used by, for example, MS Visual Basic and
MS Visual C++. Our description is brief, aiming to show the basic principles. The
description is taken from “Database developers guide with Visual Basic 4” (Jennings,
1996) and is based on version 3.0 of DAO. The data access objects are used by data-
aware user interface components to directly connect themselves to the underlying data.
This is the same architectural style used by, for example, Borland Delphi, although the
actual designs differ.

'DWDEDVH

4XHU\'HI 5HFRUGVHW

3DUDPHWHU

)LHOG

7DEOH'HI

,QGH[

5HODWLRQ

Figure 4: The structure of (part of) Microsoft DAO 3.0.

Figure 4 shows the structure of the most important parts of DAO expressed as a UML
class diagram (the diamonds denote aggregates). For each class, there is also a
corresponding collection, i.e. a class representing the set of objects of the class. For the

class Recordset there is, for example, a corresponding class Recordsets. The meaning of
the most important classes is shown in Table 2.

To query the database, objects of the class Recordset are used. Each Recordset
object is based on an existing Tabledef object or Querydef object and is used to browse
the resulting set of records (tuples). Optimization of network traffic is built into the
model because a given tuple is not physically retrieved from the database until the
corresponding row in the Recordset object is actually used.

Tabledef The definition of a table with fields (attributes) and possibly indexes.
Querydef Stored (precompiled) queries or procedures.
Recordset A table or answer of an SQL query, which can have parameters.
Relation Referential integrity between two tables.
Database The whole database.

Table 2: Some of the most important classes of Microsoft’s DAO 3.0.

It is worth noticing that what DAO offers is merely object-oriented handling of
the primitives in the relational model. A domain object that has been distributed across
many tables, perhaps due to normalization, will thus not constitute a single DAO object.

Object interfaces

There are many possible designs to maintain a mapping from objects in a client to tables
in the database. The OOA method by Coad and Yourdon (1991) recommends a dedicated
database object to be created for each persistent domain object. The database objects are
then responsible for retrieving and storing their domain objects’ data in the database by
use of, for example, SQL. Agarwal and Keller (1998) present an object interface
architecture where each domain object (called a business object) communicates with one
or more table objects, each representing a row in a database table. Such an architecture
can, of course, be combined with that of Coad and Yourdon and is actually an application
of encapsulation of the relational database structure as described previously, though not
necessarily based on DAO.

A problem with these kinds of mappings (sometimes referred to as procedure
interfaces) is that DBMS support is not optimally utilized. It is the application that must
handle, for example, query optimizing and transaction processing. An obvious risk with
this approach has been referred to as the server trap, i.e. that an object-oriented DBMS is
built from scratch in every new project.

Multi-tiered architectures

One approach to overcoming some of the obstacles with mappings from object-
orientation to relational databases is to use a “Multi-tiered client/server architecture”
(MTCS). An example of MTCS, using three tiers, is that used by a Swedish company
developing systems for the financial market, shown in Figure 5 (Björnstedt, 1997).

In this three-tier architecture, clients (in the client services tier) use an object-
oriented database that takes care of transactions and maintains an object-cache (in the
business services tier). The OODBMS acts as a mediator and retrieves actual data from a
relational database (in the data services tier). One advantage of this architecture is that
client programs need not bother with transactions since these are handled by the
OODBMS. Another advantage is that code (objects) can be transferred between clients

and server for performance optimization, if the same language (typically Java or
Smalltalk) is used in both tiers. The object cache also minimizes the need for frequent
(and time consuming) SQL joins. The relational database can be changed to an object-
relational database if needed. With a competent OODBMS, data might actually be
fetched from any source, for example web servers, and be presented as objects to the
clients.

22 &OLHQW � 22 &OLHQW � ��� 22 &OLHQW Q

2EMHFW

FDFKH
22 6HUYHU

5'%

&OLHQW VHUYLFHV WLHU

%XVLQHVV VHUYLFHV WLHU

'DWD VHUYLFHV WLHU

Figure 5: A three-tiered architecture (Björnstedt, 1997).

Conclusions

This paper has elaborated on the problem of mapping an object-oriented analysis to a
relational design. It has been shown that such mappings can be performed in two
primarily different ways, yielding the classification of object-oriented systems shown in
Figure 6.

The first approach is to use an object-oriented interface to a relational database
(i.e. the objects model the RM, not the problem domain). That is, to not implement the
domain objects (business objects) in the client, represented by the “No domain objects in
clients” leaf of Figure 6. Instead, data and functionality are separated; with data in the
database and functionality distributed across user interface objects. This is a simple and
convenient solution with an environment such as MS Visual Basic. At the same time, it is
far from optimal from an object-oriented point of view. This is the most common
approach in current rapid development tools, which typically handle the RDB interface
transparently by letting developers use predefined database components.

The second approach is to let domain objects execute in clients’ address spaces
and maintain mappings to their representation in the database, represented by the
“Domain objects in clients” leaf of Figure 6. A problem with such an approach is that it
abandons the support given by client tools’ database components (e.g. Borland Delphi),
as mentioned above. This in turn leads to increased complexity and time consumption
during technical implementation. Another implication is that it does not take full
advantage of the capabilities of the database management system. Developers must, for
example, implement their own query optimizer and cannot use the benefits of a

declarative query language such as SQL. The mappings between client domain objects
and their database counterparts are typically implemented by the use of some object-
oriented encapsulation of the relational database, such as DAO (the same technique as
used in the first approach mentioned above).

2EMHFW�RULHQWHG V\VWHP

+\EULG V\VWHP

1R GRPDLQ REMHFWV LQ FOLHQWV 'RPDLQ REMHFWV LQ FOLHQWV

3XUH REMHFW�RULHQWHG V\VWHP

Figure 6: Classification of object-oriented systems.

Furthermore, the problem is not eliminated by the use of three or more tiers
instead of two. Assuming that we have good middleware support to handle
communication between clients and application servers, as well as between application
servers and databases, we must still deal with separation of data and functionality.
Although we have more options when deciding where to put what, we must still make the
decision. With a three-tier architecture, the problem is merely pushed down from client
development to the development of business objects in the business services tier
(executing on application servers).

The lack of a rigorous formal theoretical foundation of the object-oriented model
might be a reason for the lack of standardized methods and architectures. Current tools
for rapid application development do not seem to be suitable for pure object-oriented
development, due to a strong bias towards the relational model.

The mismatch between the models seems to be derived from differences in
perspective. The relational model regards information and information processing as two
different aspects of the world that should be treated independently. In the object-oriented
model these two aspects are non-separable. The relational model encourages availability
in order to cope with changing environments. The object-oriented model encourages
information hiding and control. The relational model regards atomic data terms as
constituents of the world. The object-oriented model views the world as constituted by
things inhabiting knowledge (data term aggregates with associated semantics) and
behaviour. Although they are different, it is possible to combine them if we are prepared
to relinquish some benefits from one in order to gain some from the other.

References

Agarwal S and Keller A M (1998). Architecting Object Applications for High Performance with
Relational Databases. Persistence Software, Inc. San Mateo, CA.

Berild S (1996). En introduktion till hybrid-DBMS. In Swedish. SISU publikation 96:11, rapport
– juni 1996.

Björnestedt N (1997). Hur utveckla objektorienterade system mot en relationsdatabas?
Presentation given in Swedish at the Neotech AB seminar “Seminarium om objektorienterad
systemutveckling med relationsdatabaser”. Royal Viking hotell, Stockholm, Sweden, 1997-
04-22.

Blaha M, and Premerlani W (1998). Object-oriented modeling and design for database
applications. Prentice Hall, Inc.

Bretl R, Maier D, Otis A, Penney J, Schuchardt B, Stein J, Williams H, and Williams M (1988).
The Gemstone Data Management System. In Kim W, and Lochovsky F H (Eds., 1988):
Object-Oriented Concepts, Databases, and Applications. Addison-Wesley. Reading,
Massachusetts.

Britts S (1997). Databaser – historik och framtidsvisioner. Presentation given in Swedish at the
Neotech AB seminar “Seminarium om objektorienterad systemutveckling med
relationsdatabaser”. Royal Viking hotell, Stockholm, Sweden, 1997-04-22.

Cattell R G G (1994). Object data management: object oriented and extended relational
database systems. Addison-Wesley publishing company, Inc.

Coad P, and Yourdon E (1991). Object-Oriented Design. Object international, Inc. Published by
Prentice Hall, Inc.

Codd E (1970). A relational model for large shared data banks. CACM, 13:6, June 1970.
Connolly T, Begg C, and Strachan A (1999). Database Systems: Practical Approach to Design,

Implementation, and Management. 2nd edition. Addison Wesley Longman Limited, England.
Dahl O J, Myrhaag B, Nyygard K (1968). Simula 67 Common Base Language. Norwegian

Computing Center. Revised in 1970, 1972 and 1984.
Date C J (1991). An introduction to database systems, volume I, 5th ed. Addison-Wesley

publishing company, Inc.
Elmasri R, and Navate S B (1994). Fundamentals of database systems, 2nd ed. The

Benjamin/Cummings publishing company, Inc.
Goldkuhl G, and Fristedt D (1994). Metodanalys: En beskrivning av metametoden SIMM. In

Swedish. Research report, IDA, Linköping University.
Jacobson I, Ericsson M, and Jacobson A (1995). The object advantage: business process

reengineering with object technology. ACM-press. Addison-Wesley publishing company, Inc.
Jennings R (1996). Database developers guide with Visual Basic 4, 2:nd ed. Sams publishing,

USA.
Langefors, B (1966). Theoretical Analysis of Information Systems. Studentlitteratur, Lund,

Sweden.
Langefors, B (1995). Essays on Infology. Dahlbom B (Ed.). Studentlitteratur, Lund, Sweden.
Object Design (1990). Objectstore Reference Manual. Object Design, Inc. Burlington,

Massachusetts.
Olsson I (1991). Fortsätt med Pascal. In Swedish. Liber, Stockholm, Sweden.
Sims O (1994). Business Objects – delivering co-operative objects for client-server. McGraw-

Hill, Berkshire, England.
Stonebraker M (1990). Third-generation database system manifesto. ACM SIGMOD record 19,

3, September 1990.
Tsichritzis, D and Klug A (Eds., 1978). The ANSI/X3/SPARC DBMS Framework: Report of the

Study Group on Database Management Systems. Information Systems, 3, 1978.

