
Talking Design
Co-Construction and the Use of Representations in

Software Development
Yvonne Dittrich, Kari Rönkkö

Yvonne.Dittrich@ipd.hk-r.se, Kari.Ronkko@ipd.hk-r.se
University of Karlskrona Ronneby, Department of Software Engineering and Computer

Science

Abstract
Software development differs from other design work insofar as the object to be
designed is not visible. Representations play an important role. Even as they only
describe aspects of the later software, they mediate the common design work.
Software engineering literature focuses on persistent representations, documents,
diagrams, mock-ups, or similar things. Our article puts ‘talking design’, where the
software is represented in utterances, sounds, and enactment, in the centre. With the
help of concepts from the CSCW discourse, we conceptualise what is happening
here; the collaborative object for the design talk is not given, it has to be
collectively constructed. Software development can be regarded as routine co-
construction. In our case the protocol of that design meeting seemed to serve as a
reminder for the participants rather than as in itself representing the design
decided upon. The design meeting, we focus in this article, was part of a distributed
software development project, with a larger project situated in Ronneby, Sweden
and a smaller one in Oulu, Finland. If important parts of design are collectively
constructed during such meetings, what does that imply for co-operation, co-
ordination and division of labour in software development projects? How can a
common practice be developed among distributed work groups?

Keywords: Co-construction, representations, talk, software development as work

BRT Keywords:

Introduction

Software development is in most cases a highly co-operative type of design work.
Software is developed by project groups in often very intense co-operation. CSCW is
concerned with co-operative work and possible computer based support for it. In this
article discussions from both areas are related to make sense of what happened during a
design meeting among software developers. From a software development point of view,
this can be regarded as conceptualising the own subject with the help of categories from
CSCW in order to understand it better. From a CSCW perspective, the representation of
the software development discussion can be seen as further background material from the
field, supporting the relevance of the conceptualisation. Being interested in software
development as co-operative work, with the goal founding the development of methods
and tools in a better understanding of the practice of software development, we are

reflecting these two perspectives.
In this article we put the use of representations as means of design and media of

communication in the center. We argue that, despite the emphasis on documents and
other lasting design artifacts in software engineering, the more flexible and fleeting
means of representation used in face-to-face communication play an important role in co-
operative design. The shared understanding achieved through these means provide the
background for the interpretation of the more permanent documents.

The concepts from CSCW help us relate these findings to the discussion about the
character of co-operative work and its dynamics. Co-construction is a major aspect of co-
operative design rather than an exception in the working distribution of labor. It puts
forward the question of how to support co-construction, perhaps even for distributed
projects.

During the period of January- June 1998 we were able to observe a software
development project that took place in Ronneby/Sweden and in Oulu/Finland. Both
teams consisted of students doing a project course in their respective software
engineering education. Both project courses are designed to provide realistic settings to
allow the students to experience and reflect on software development under industrial
conditions. The students develop software for real customers and are supervised by an
experienced software engineer acting in the role of a ‘Head of Department’. In our case
the project was successful; a running program satisfying the requirements was delivered,
and both projects contributed to it. However, the co-operation did not work in a
satisfactory way. Despite the fact that the two subprojects were only loosely coupled, the
distribution of tasks and the mutual expectations and sub-goals were not clearly decided
upon and communicated. Half way through the project the communication almost broke
down. With joint efforts it was improved. In the end, both subprojects contributed to the
finished product. The possibility to generalise from student projects could of course be
discussed. However, even in real life industrial settings written and oral representations
are used for co-operative design. In this respect, student projects differ less from real
world projects than for example regarding organisational issues and budgeting.

The next section revisits the discussion around the use of documents and
representations in software engineering. Then we put a specific meeting in Ronneby in
the centre, a design meeting where the overall architectural design of the software was
collectively constructed. What took place during that meeting was a joint construction, a
co-construction (Badram 1998) of what the future software should look like on an overall
level. The developed understanding could not be communicated alone through the
documents produced.

Here we see one of the main problems regarding the spatial distribution of
software development – or “software engineering in the wide”; software development can
be regarded as routine co-construction. The problems of the co-operation between the
two teams, and our observations within the Ronneby team, showed how much this co-
construction, as well as the everyday co-operation and co-ordination, depends on a shared
space that allows for spontaneous as well as planed face-to-face meetings. Software
development practice is developed using – and hence depends on – face-to-face
communication. Software engineering in the wide requires a changed practice as well as
adapted technology.

Representations in Software Development

In developing a shared understanding of a not yet existing and inherently invisible
artefact of high complexity, (Brooks, 1986) representations play an important role, in
meetings and face-to-face communication as well as for asynchronous communication. It
is no surprise that representations have been considered important for software
development by most of those involved with it, independent of what backgrounds
researchers and practitioners come from. In the ‘Software Engineer’s Reference Book’
(McDermid and Roock 1991), which can be regarded as compiling a mainstream
perspective on software development, the whole software development process is
described as transformation of representations of the future software until the final
representation, the executable program, is ready. The different representations are taken
to mark milestones in the development process, interfaces between different phases that
are thought to be internally largely independent of each other. This so-called Waterfall
Model was questioned by Parnas and Clement in their article ‘A rational design process –
why and how to fake it’ already 1986: Software developers don’t work that way. The
authors proposed nonetheless to produce a documentation of the product, as if it were
developed in such a rational way, supplemented by the history of argumentation and
change around the design. This would help the developers to communicate the reasoning
behind the design and allow reconstructing the design decisions later on.1

Naur added with his article ‘Programming as Theory Building’ (1985) another
perspective on the role of documents. Here he claims that the development of a theory,
relating the design of the interface and the software itself to its anticipated use, plays an
important role in software development. Such theories, he claims, surface in the
communication about the design and guide the actual work, but they cannot be
communicated through documents only. If that is true – and Naur provides some
argument for it – then what is the role of various types of representations and
documentation during development?

In the context of participatory and evolutionary development the role of
documents and other design artefacts are discussed from a different perspective. Common
artefacts such as mock ups, prototypes or scenarios should serve as boundary objects
between language and practice of developers and language and practice of users. (Ehn
1993) Moreover, design artefacts can support the development of a common practice and
common language between users and developers. (Dittrich 1998) Other authors
emphasise the same mediating qualities of design artefacts and documents in-between
developers. (Keil-Slawik 1992) The tools & materials approach by Züllighoven et al.
builds a whole development methodology on the use of documents as means for the
developers to make sense of the work practice the software should be embedded in as
well as to design and develop the software itself. (Bürkle et al. 1995) The
conceptualisation of the documents and other design artefacts changed in that context:
they are no longer regarded as interfaces transferring information between phases and
groups but as common artefacts mediating the developing process, as necessary means of
co-operative development. Using a concept from Bardram (1998), this aspect of the use

1 The waterfall model was criticised also from a usability perspective:
Lehman's article about ‘Software, Life cycle, and law of program evolution’ added to the
discussion by recognising that the result of this description, the finished software,
changes the situation it is derived from. Boehm’s spiral model (1988) and evolutionary
models like in STEPS by Floyd et al. (1989) indicate the further development.

of documents can be called co-construction: the common object is defined in relation to
the problem to be solved and the situation at hand.

Based on our analysis of design talk in the following section we propose to
consider not only the distinction between oral and written representations, but also their
use regarding different aspects of the co-operative design work. During an empirical
study about the co-operation in a distributed software development project we had the
opportunity to videotape and analyse a design meeting. In this design meeting the
collaborative construction of the overall architecture was proposed, negotiated and agreed
upon. The resulting document of that meeting can only be regarded as a reminder for the
participants. Other means were used to represent the future software in order to make it
visible for the group and to discuss the overall design: drawings on the white board
providing an easy to change medium for representations, and enactment were used to
represent runtime properties of proposed solutions. These means to represent the future
software during the design meeting were necessary for the software engineers to reach a
shared understanding of the common object, which in this case is the overall software
architecture.

In the following section we shortly describe the observed project and the study.
Then we introduce you to the design group. We analyse in detail two minutes of the two
hour long meeting, a passage we call the bridge talk. Thereafter we will discuss what that
implies regarding co-operation and communication and the use of representations in
software development as well as computer support for this kind of work.

The Bridge Talk

Background and Methods

The bridge talk took place in the context of a ‘big team project’ as part of the
undergraduate education in software development in Ronneby. ‘Big team project’ means
ca. fifteen third year students in software development, three economics students and two
students studying in a program called ‘people, computers, and work’ are working
together in as realistic conditions as possible. Each student has a budget of 700 hours to
spend on the project. The budget of this specific project was 13300 person hours. The
students are acting as a software developing company with an industrial partner as a
customer; the supervisor plays the role of a head of department; negotiations, contracts
and commitments are up to the group itself as well as the organisation, the planning and
the fulfilment of the contract.

We observed one of these projects which was co-operating with a small
programming project in Oulu, Finland. The programming project teams in Oulu consist
of 3-4 students having each a budget of 200 hours. Otherwise the course has the same
rational. Working for an external customer allows for realistic conditions. In our case the
Ronneby project was acting as a customer. The goal was to learn and teach about
software engineering in the wide. In order to evaluate the experience, the project was
subject to two case studies, one in Ronneby and one in Oulu.2 During the software

2 The Ronneby case study was the basis for a bachelor thesis within the

‘people, computer, and work’-program (Alriksson & Rönkkö 1998). The Oulu study will
result in a master thesis of a computer science student (Petman under construction).

development which lasted for 5 months the empirical research-material was collected by
interviewing, by observing, audio-taping, and video-taping project members in different
meetings, such as: ‘Head of Department’ meetings, project meetings, inspection
meetings, video and telephone conferences. Another approach was to hang around in the
project room and take coffee breaks with the team members in order to understand the
evolution of concepts and the difficulties in communicating them. We had access to the
written communication in-between project members in the form of emails that were cc:ed
to us. All documents produced were placed on their common work space, using a BSCW3

server. We had access to that too.
We paid one visit in Oulu half way into the project to interview the Finnish team,

and to share observations with the teachers and researcher in Oulu. The largest part of the
empirical research has been done in the first period of the project, their pre-study phase.
The performed field study of this distributed software development project has the
characteristic of an ethnographical study. We have used Interaction Analysis on the
shown field material in this article; the transcribed videotaped meeting.

The customer for our project was a medium sized Swedish software company
specialised in strategic gameware. The task of the project was to develop a software
system to simulate companies for management education. The co-operation and co-
ordination were left to the projects. In Ronneby the project decided to make it a task of
the project leader, in Oulu the group considered the project too small to make one person
responsible for it. They all took over the responsibility of receiving and answering mails,
of co-ordinating and keeping contact. The form of co-operation – Oulu was to play the
role of a subcontractor – and the content of the subproject were defined early on. Oulu
had access to all project documents. They used the same virtual work space to store their
own documents.

Nonetheless the co-operation did not work very well. For example, it was not
clear between the groups, who was responsible for the design of the database which was
to provide the interface between the parts. Mutual requirements for the interface between
the two parts were exchanged at a late state in the project. Documents were difficult to
locate in the complex structure designed by part of the Ronneby project according to their
local needs. Professional terms such as for example ‘project report’ had different
interpretations in each place due to a differing software development ‘culture’. This was
not recognised by the students and caused misunderstandings and frictions between the
project groups. In the end, the sub system the Oulu group was responsible for could only
be finished, thanks to the fact that the students spent additional time on the project and
got additional study points for it.

Despite a good technical infrastructure – the students were able to meet in video
conferences, they used e-mail and chat, a BSCW was installed to provide a common
work space, they could have used telephones – the difficulties in co-operation and co-
ordination were resolved very late in the process. The mutual access to an elaborated set
of documents did not make a difference here. The video recording and subsequent
Interaction Analysis of a design session helped us to understand the source of these
difficulties and to reformulate the question; we stopped wondering why they did not
communicate and started to admire their success despite the geographical distribution of
work.

3 BSCW stands for ’Basic Support for Co-operative Work’ an application

which has been developed by the GMD in Bonn. (Bentley et al. 1997)

The setting

The project team in Ronneby, consisting of twenty students, had to split up into
subgroups itself. They started out with two design teams of three software engineering
students, a quality team consisting of software engineering students, and the MDA
students and economic students making up a team of their own. For the implementation
phase they split up the group according to subparts of the software. In the Ronneby team
the co-operation and co-ordination between the subgroups worked well enough, so that
the final product was developed in time.

In the taped session, the two design teams, each of which had separately developed
proposals for a common overall design solution, met together with the project manager in
order to join their contributions and develop a common design. They met in a smaller
group room which was equipped with a whiteboard, and a table with chairs around it (see
figure 1). Before our transcribed two minutes, one hour of the meeting had taken place,
during which each team presented their design proposal to the other team and they were
one hour into a discussion of the common design. In the following analysis of two
minutes of this session, we focused on means of representation that served as common
references or common artefacts during the design meeting.

The white board as lasting common ground

One of these means of representation was the whiteboard that was part of the equipment
of the room. During the whole session it was used to represent the momentary state of the
common design solution. The students used common notations in software engineering:
boxes, text, and arrows.

At the point where this transcription started everybody seemed to be pleased and
kind of grasping each other’s proposals. It becomes clear that there exist conflicting
perspectives concerning the understanding of the white board representation, when the
Chief of Software Architecture says4:

4 Transcription notation system developed by Gail Jefferson. The original

language in the transcription is Swedish. CSA: Chief Software Architect, PM: Project

Figure 1.: This is the way they were gathered around a table, with a whiteboard in the room.
On the whiteboard (here conveniently laid out on the floor) we can see the game creator
represented to the left, the Game engine in the middle and the client to the right. The issue of
their discussion in our example is in the space in-between the broken line, that are to say if
there is a need for a Bridge.

CSA: →What! Put something in-between, there is no need for anything in-between, if
we,
[if]we have

PM: [If]
C: [If], if we have TCP IP (0.2)
CSA: No, even if we have RPC, there is no need for anything in-between. (0.4)
V: →No need for anything in-between? (0.2)
CSA: Between ((points with his right hand at the whiteboard drawings, first at the

engine then at the client)) engine and the client. Okay we need a communication
class, →but that we need in whatever solution we will have. (0.2)

V: ((moves his chair a bit backwards, then leans back in his chair at the same time as
he puts up both hands behind his neck)) Hmm ((makes smacking noise)) ye, yes
(0.2)

C: →Then we do not need that bridge which we had [then]
V: [Hm::] (0.9)
V: No eh:: the reason that I wanted the bridge (0.2) is namely: First, this discussion

we have now. (0.2) We don’t know which technique that is good to have. But it
won’t ((moves his head like saying no)) be any danger because ((looks in a
searching way at the whiteboard)) we will export object type COM, so what
technique ((an opening gesture with his arms)), in this way lets say TCP IP or
RPC and they won’t function. So then we can exchange without digging in the
client, (0.2) OR without digging in the engine=

CSA: =Hm::→What you are really saying is, your bridge ((looks towards the “bridge”
on the whiteboard)), it could as well be connected with, with the engine. ((V nods
his head as though saying yes)) It is just that you have put a COM interface in-
between them.

V: Yes ((CSA nods his head as though saying yes, looking at V))
[and because]

CSA: [That, that]

In the transcript we can see how they achieve a physical sharing of key objects with the
help of drawings on the whiteboard. It eases their further development and questioning.
In this way, the progress or agreements become within reach to be pointed at and talked
about even as time goes by. Since the talk itself did not include pre-programmed
questions or answers, the direction of the talk is achieved by the participants and can
change with every new turn (Suchman 1987). The white board provides a common
memory or a stable ground to their otherwise fleeting, fast and continuously ongoing talk.
The participants used it to take care of some of the progress or agreements from their
talk. The collaborative corrections, adjustments and agreements in every new conver-
sational turn are in this way negotiated and articulated into a shared understanding of the
white board representation.

Enacting as resource in communication

At the point where the first transcription ended, it seems as if they reached a shared
understanding again. However, another project member from the same team as CSA

Manager, C, V: Software Engineers.

shows his confusion.
C: =But what, the COM interface, COM is an object ((forms his hands like holding

the COM object in-between them over the table)), an object that is COM or COM
component ((each time he refers to the COM he moves what he is holding in front
of himself up and down)), but what ((looking in a searching way at the
whiteboard)), what is it that is the COM component? →Is it the bridge ((moves
what he is virtually holding in front of himself to the right)) that is the COM
component
[or is] it ((now moves what he is holding to the left))

V: [no]
C: a part of the game engine, or? (0.1)

C, a member in CSA’s team, realised that he did not understand the new turn the
conversation had taken. So he forced the conversation into one more explanation-turn by
asking questions, hoping that he also would be able to grasp this new understanding the
CSA got hold of. As a way of expressing his confusion, he performs an enactment with
the help of his hands, trying to mediate what he understands of the COM functionality but
somehow not knowing where to put it. The talk continues:

CSA: A part of the game engine=
C: =→A part of the game engine? ((first looks at CSA then directly back to V as

if he is the one to answer the question))
V: The whole engine is a COM object and it can in its turn, the file can access new

COM objects ((moves his right hand forwards)), you have your game engine
((representing it with an open hand in front of himself)), Schach ((moving
fast upwards with his right hand like grasping something of the same size
as an apple in the air, holds it)), then they say give me values, ((doing the
same movement and grasping, but now with his left hand)) prrt, the value
says, give me a company, ((same movement and grasping again as the first
time with the right hand)) schach, my company says give me sub-scenario one,
((doing the same movement and grasping again, but now his left hand))
one, then ask for then, now I have these two((holding the two virtual “values” in
front of himself, and looking at them)), tell everything to me and then the game
engine starts ((doing the movements in turn with both hands, left hand
backwards and right hand upwards, again and again)) going
[forwards and backwards there.]

C: [→And it is the bridge that sits] and ((repeats V’s earlier hand gesture with
his right hand, but with smaller movements)) pick up and asks after all
these?=

V: =Yes, and the bridge goes from using these ((does the hand movements just
as above, again and again)), these COM objects, then interprets them to what
ever ((kind of throw away things movement with his right hand, repeated
faster and faster a few times)) communication channel ((C nodding yes with
his head, up and down)) it wants=

As if the body language were not enough, V in his answer added sounds to his enactment,
this as a way of injecting even more ‘life’ in it. It appears that the COM object should be
understood as a function, something that the static white board representation does not
provide. The functionality was instead illustrated with body movements and sounds. In

order to confirm and unfold earlier enacted contributions in their talk, the developers also
imitated each other’s earlier enactment’s as references to what they were talking about, as
if the shared understanding was linked to these earlier objects of enactment.

In another episode later on, enactment is used together with the whiteboard in
order to represent dynamics through this otherwise static medium.

The role of their representing protocol from the design meeting

The meeting continued, until the participants thought they had a common enough
understanding of their design object, the collaboratively constructed overall design. The
software engineers’ work of developing and agreeing on the overall design solution was
nothing they considered as special in any way. It was part of their daily, ordinary work, an
important meeting of course, but at the same time just another meeting. The actual work
of developing a shared understanding and agreement concerning the collaboratively
constructed design object was taken for granted and passed unnoticed. This is the kind of
mundane work that is not necessarily consciously made note of. Project members would
not function or go ahead in the project if they started to consider every such step they
made in detail. However, for us as observers it is of interest how they reached a shared
understanding of the design object and agreed in their mundane work. If this is the way
mutual intelligibility and shared understanding (Suchman 1987) develop in a project,
then it also has implications for how the role of the documents should be understood.

The protocol from this meeting included the same representation as that which emerged
on the white board. There was rarely any describing text connected to it. It seemed to be a
memory support made exclusively for the team members present at that meeting. If the
framework for interpreting the representations emerged parallel to the ‘hard’ work of
establishing shared understanding, as seen above, then how can project members that
were not present at the meeting interpret the protocol and take part in this shared
understanding? How was it possible for the non-present project members to
collaboratively operate and co-ordinate work that depended on knowledge developed at
this meeting? The project on the Ronneby side, where the main part was developed, had
the advantage of physically having each other within reach for face-to-face
communication. They could establish and re-establish their shared understanding
concerning the common product through face-to-face communication; in the corridor or
in a discussion during a coffee break, arrange new meetings, by personal interviewing, or
perhaps get understanding through overhearing others talk, to give some examples. While
the Finnish side in their striving for understanding had to trust the information
technology, which turned out to be insufficient.

Figure 2: The representation from their protocol.

Game Creator

ODBC interf.

File
Inter-f
face

Game Engine OM
inter-
face

Bridge In-
ter-
face

Client

Interface

File
Inter-
face

Representations and Co-operative Design

During the field study, the bridge talk and the analysis of it have helped us to understand
the dynamics of the co-operation and co-ordination within the project group and with the
Finnish team. Instead of focussing on the interaction or non-interaction between sub-
groups we started to look at the co-operation in a more vertical way. Software
development work often is not nicely organised with sub groups taking care of tasks
which can be put together afterwards, despite of what is regarded as an ideal. The focus
on planning and reporting, estimation and measurements, and defined routines, can
perhaps even be regarded as an indicator that especially this aspect of software
development work is a rather problematic one. Software development as co-operative
design work means to co-construct the ‘what’, to co-operate in the implementation of it
and to co-ordinate this co-operative effort. Oral and written documents, artefacts like
mock-ups, plans, and procedures play a role in all these types of work.

This aspect has been recognised within the software development discourse as
well. Floyd emphasised that software development includes the design of the program as
the product, the design of the process to develop it, and the design of the use situation.
(Floyd 1992) The three design aspects in software development are mutually dependent
on each other. The dependency between process and product holds even when the
technical aspects5 of software development are put into focus; for example the overall
architectural design of the program indicates how the work can be distributed among sub-
teams. On the other hand the actual co-operative implementation influences how the
design is interpreted and perhaps changed in order to fit the distribution of work force
and competence. The co-development of the design and a shared understanding are
therefore not only a step to the final product, but also necessary for a working distribution
of labour.

Dynamics in co-operative work

Artefacts – plans, documents, key racks (Robinson1993), for example – are subjects in
the CSCW literature as well. In ‘Coordination mechanism’ Schmidt and Simone (1996)
introduce a way of looking at the interaction of co-operative work and artefacts. The co-
operative work is constituted by the interdependency of actors in their individual
activities contributing to a common objective. Changes in one of the fields of work imply
changes in the whole system. In this way the actors interact through the change in their
common field of work, through a common artefact. The co-operation has to be
restructured in order to regain stability regarding the co-ordinated activities. Articulation
work is needed to restrain the complexity of the interdependent activities.

The co-operative work that is be supported by these co-ordination mechanisms
seems to take place in a stable division of labour. Articulation work to reconstruct this
division and the necessary co-ordination mechanisms is an exception caused by a break-
down. Focusing on stable work situations on co-ordination mechanisms and their
redefinition through articulation work makes a lot of sense if one is looking for computer
support. However in our example it leaves us with some confusion. Regarding the
construction of a software system, the whole talk was articulation work. Within the talk
itself you can distinguish work: describing, explaining and arguing for a design solution –
and articulation work, -what is the problem we were assigned to solve. Besides this, in

5 And, as in this article, the designer – designer communication, is put into focus.

our case there did not yet exist any stability in the division of labour. Both the ‘what’ and
the ‘how’ still had to be constructed together, as well as the co-ordination mechanisms
for the further design effort on the different levels.

Bardram proposes in his article ‘Designing for the dynamics of co-operative work
activities’ (1998) to take further dynamics of co-operative work into consideration.6 He
also takes as a starting point, what takes place after problems or break-downs have
occurred. He points at the need for addressing the dynamics for understanding co-
operative work. Bardram’s conceptual frame is based on Activity Theory. Activity
Theory identifies a three level hierarchical structure of collaborative activity, which is
what co-operative work is called in this school. On the first, the co-construction level, the
collaborative object is either not stable or does not exist and therefor has to be
collectively constructed i.e. co-constructed. Questions like; ‘What is the meaning of this
problem?’, ‘How did the problem emerge?’, ‘Why are we trying to solve it?’, ‘Who
benefits from the solution?’ are asked on this level. On the second, the Co-operation
collaborative level the actors have achieved a common object from their collaborative
work. The actors are engaged in balancing and adjusting their own actions to the actions
of their partners in order to achieve the common task. The third, the co-ordination level
is that of routine flow of interaction, where work is done in harmony with surrounding
activities. Here the flow of work goes on without questioning or discussing, according to
tacitly assumed traditions and norms. In practice collaborative work takes place on all
three levels according to the requirements of the situation. Figure 3 shows the dynamics
between different levels. The collaboration shifts between the three different levels of co-
ordination, co-operation and co-construction. Problems within routine work lead to
breakdowns in the co-ordination level and become subject for co-operation, and
breakdowns on the co-operation level in turn become subject for co-construction.

Co-construction
Reflection on the Implementation:Stabilizing
Object of work the object of work

Co- construction
Reflection on the Routinization: Stabilizing
Means of work the Means of work

Co-ordination

Figure 3: Levels of collaborative activity (Badram 1998, p.92)

Co-construction, co-operation, and co-ordinated work in software
development

In software development projects the routine division of labour is achieved together with
the design of the software. Design and development projects do not start out with a given
object to work on. The common object is the subject of the construction throughout the
whole process. Expertise and routine regarding how to run such projects will of course be
acquired over time. Regarding each project, the new product, a suitable way to divide the

6 Badram argues against Schmidt and Simone. However, we actually rather

see them as two ways of conceptualising what is going on rather than contradictions. To
discuss the relationship in depth would be interesting but is beyond the scope of this
article.

work and the team, and a working co-ordination of the single tasks has to be achieved.
Even if there are existing mechanisms and routines for how to achieve the co-ordination
they have to be adapted and customised for the project at hand. With the product, the
process has to be designed and implemented. The emphasis put on the different aspects of
co-operative work might change throughout the project. Independent of the overall
process model, during the requirements and design phases the co-construction can be
regarded as the main task. During implementation co-operation and co-ordination might
be most visible from the developers’ perspective. However, as the design is not finished
until the software is ready, the division of tasks to be co-ordinated is not stable. Tasks are
redistributed, designs are changed because of unexpected technical constraints or
evolving requirements. One could say that co-construction is routine work for software
developers.

The design talk we have analysed here is an example of such routine co-
construction. With the talk the participants developed a shared understanding of what the
software on an architectural level should look like. Through the arguments the rationale
behind the design, the advantages and disadvantages and the risks were shared, too. Thus
not only the foundation for the division of further design and implementation were laid,
also the background to co-ordinate the co-operative tasks was developed; which other
tasks might be influenced if I have to change my design, and whom should I contact. For
this co-constructive task only the white board, talk and enactment were used as
representations. The representation in the protocol showed the attained solution, but did
not tell about the ‘why’s and ‘how’s of it. Through reading only, the result of the co-
construction, the shared understanding of what should be build, could not be
communicated. Within the Ronneby team this was solved through everyday
communication going on unrecognised and undocumented. A subgroup that did not take
part in the product design but designed the quality assurance routines and quality criteria
for the different documents was introduced into the co-operative design and
implementation without any great problems. The Finnish team however was left behind.
Despite being able to read all the documents and follow changes, with the help of a
common BSCW workspace, they did not participate in the co-construction and its result
in a satisfying way.

Different representations and different forms of representations serve different
purposes. To some extent this has been acknowledged in literature. Process-related
documents – plans, review routines, progress reports for example – help to organise and
co-ordinate the co-operative work. Product-related documents – stating requirements,
design documents on different levels, documentation, test specifications and protocols –
describe attributes of the software under construction. We propose adding another
dimension for distinction regarding the medium of the representation: In our example talk
and enactment, two fleeting mediums, were used for highly interactive co-construction.
White board drawing, a less fleeting medium, was used to keep certain aspects of the
object under construction present during the meeting. On the other hand it is a flexible
enough medium to not restrain the evolving and sometimes meandering discussion.
Written or computer-based documents yielding very permanent representations were used
to document results, to structure the design, and to organise the common work over a
longer time. Beside this, the different mediums were interwoven; oral communication
was used to explain documents; computer based drawings like the ‘result’ of our talk
helped the participants to remember what was going on during the design meeting.
Without being able to prove it, it seems that co-construction mainly takes place in
fleeting mediums whereas more permanent representations are used to support co-

operation and co-ordination. If that thesis holds, the role of documents for software
development has to be reconsidered as well as the possibilities for distributed software
development and its support by CSCW applications.

One Conclusion and a Bunch of Questions

The main result for us is that software development has to be regarded as routine co-
construction.7 Therefore it is not enough to consider the co-ordination aspect of it in order
to reason about computer support. CSCW often focuses on communication, co-operation,
and co-ordination between people or between groups. Often the object of the co-
operation, the goal to be achieved, is assumed to be given. Software development starts
out with a very vague goal compared to the needs of users; an idea of a computer
application, a satisfied customer. What that means in terms of the software to be
developed is unclear. The co-construction of the common product and the design of a co-
operative process to achieve it are major parts of the routine work and not exceptions or
break-downs that have to be resolved.

We shared an example of such a design meeting where a important part of the co-
construction took place, and we were able to observe the impact of not taking part in the
co-construction and not being properly informed about the results. How in the normal
everyday practice co-construction, co-operation and co-ordinate work interweave was not
our focus and is still an open question.

We had the possibility to see how software developers used talk, body language,
enactment, and a whiteboard to co-construct an overall design of their program.
According to our observation the co-construction within software development takes
place above all in face-to-face situations, either during coffee breaks, in front of a screen
or a document, or during meetings. Distant co-operation in such tasks seems difficult but
necessary; co-operation and a working distribution of labour, and the co-ordination of the
defined tasks very much rely on it. A lively discussion via a videoconference device is
very difficult, and video conferencing requires a special set up. The technique itself also
has its drawbacks as described for example by Heath and Luff (1993). Spontaneous
interaction would be difficult. Often such a dilemma is answered by asking for new, and
better technology, or alternatively the conservation of today’s practice. However, we all
know examples of distributed co-constructive practice; the scientific discourse or the
organisation of conferences for instance. Besides the development of well-adapted
technologies, for distributed Software Development different practice is to be developed,
too.

What might efficient computer support for distributed software development look
like? In our case, the students used the BSCW developed to define a common workspace
for their documents. That did not work in a satisfying way. While that might be due to the
negligence of the distant group regarding the design of the structure of this common
workspace, sharing documents is certainly not enough. How can existing technology be
used to support the co-operation in a suitable way? How must the work practice be
adapted to allow co-operation across long distance? Perhaps the bottleneck of
digitalisation might turn out to influence the development of a design feature – like
structurally necessary columns in an example from architecture (Tellioglu et al. 1998). A

7 With ‘routine’ in this place we don’t mean the ‘coordinated activity’, like

Bardram, we mean the normal everyday work practice.

typographic practice of co-construction might also lead to a better documentation.
This spring term we will have a second trial regarding software development in

the wide. Again a big team project in Ronneby will co-operate with a smaller
programming project in Oulu. We will share our experiences and observations with the
new students. The results will teach us a second lesson. Perhaps some of the questions
raised above can be answered, perhaps new one will be added.

Acknowledgements

We wish to thank Monika Alriksson and Timo Petman, who conducted the field work
together with us. We jointly tried to make sense of what we were observing. Conny
Johansson and Antti Juustila made the co-operative project possible and supported us as
critical discussants. The project members with a rare openness allowed us to spy. We
thank our colleagues, especially Sara Ericsén, for support and comments on drafts for this
paper.

References

Alriksson, M., Rönkkö, K.: Softalk. Communication in distributed software development,
Bachelor Thesis, Institute for Computer Science and Business Administration. University of
Kralskrona Ronneby 1998.

Bardram, J. E (1998): ‘Designing for the Dynamics of Cooperative Work Activities’ in
Proceedings of the Computer Supported Cooperative Work CSCW 1998, (Seattle, November
1998) ACM Press.

Bentley, R., Horstmann, T., Trevor, J. (1997): ‘The World Wide Web as enabling technology for
CSCW: The case of BSCW’, in Computer-Supported Cooperative Work: Special issue on
CSCW and the Web, vol. 6 (1997).

Bürkle, U., Gryczan, G. and Züllighoven, H. (1995): ‘Object-Oriented System Development in a
Banking Project: Methodology, Experiences, and Conclusions.’ in Human Computer
Interaction vol. 10 (1995), 2&3, pp. 293-336.

Brooks, F. P. Jr. (1987): ‘No Silver Bullet- Essence and Accidents of Software Engineering.’
Computer, 10-19.

Dittrich, Y. (1998) Developing a language for participation. Project language as a meeting
place for users and developers in participatory software development. Technical Report,
University of Karlskrona Ronneby, 1998.

Ehn, P. (1993): ‘Scandinavian Design: On Participation and Skill.’ in Schuler, D. and Namioka,
A. (eds.): Participatory Design: Principles and Practices Hillsdale,New Jersey 1993, pp 41ff.

Floyd, C., Reisin, F.-M. and Schmidt, G. (1989): ‘STEPS to Software Development with Users.’
in Ghezzi, G., McDermid, J.A. (eds.): Proceeedings of the ESEC ’89. Berlin.

Floyd, C. (1992): ‘Software development as reality construction’ in Floyd, C., Züllighoven, H.,
Budde, R. and Keil-Slawik, R. (eds.): Software Development and Reality Construction.
Springer Verlag: Berlin.

Grinter, R. E. (1998): ‘Recomposition: Putting It All Back Together Again’ Activities’ in
Proceedings of the Computer Supported Cooperative Work CSCW 1998, (Seattle, November
1998) ACM Press.

Heath, C. and Luff, P. (1993): ‘Disembodied Conduct: Communication through Video in a
Multi-Media Office Environment.’ in Baecker. . R. M. (ed.): Readings in Groupware and
Computer-Supported Cooperative Work. Assisting Human Collaboration, San Mateo, CA:
Morgan Kaufmann, 837-841.

Keil-Slawik, R.(1992): ‘Artifacts in Software Design.’ in in Floyd, C., Züllighoven, H., Budde,

R. and Keil-Slawik, R. (eds.): Software Development and Reality Construction. Springer
Verlag: Berlin.

McDermid, J. and Roock, P. (1991): ‘Software Development process models.’ In John
McDermid (ed.): Software Engineers Reference Book, pp 15/3-15/36.

Naur, P. (1985): ‘Programming as Theory Building.’ Microprocessing and Microprogramming
15(1985), 253-261.

Parnas, D. L. and Clement, P. C. (1986): ‘A rational design process: How and why to fake it.’
IEEE Transactions on Software Engineering SE-12, 251ff.

Petman, T. (under construction): Communication Matters. Master Thesis, University of Oulu.
Schmidt, K. and Simone, C. (1996): ‘Coordination mechanisms: Towards a Conceptual

Foundation of CSCW Systems Design’, Computer Supported Cooperative Work, vol 5.
Schmidt, K. and Sharrock, W. (1996) (guest editors): Computer Supported Cooperative Work,

Special Issue on Studies of Cooperative Design. vol. 5, No.4, 1996.
Suchman Lucy, (1994): Plans and situated actions, Cambridge University Press.
Tellioglu, H., Wagner, I. And Lainer, R. (1998): ‘Open Design Methodologies: Exploring

Architectural Practice for Systems Design’ Broadening Participation: Proceedings of the
Participatory Design Conference Seattle WA. USA, November 12-14 1998.

