
Designers' Role Orientations in User- and
System-Centered Design Phases

Jarmo Sarkkinen
jarsa@rieska.oulu.fi

HCI & Group Technology Laboratory
University of Oulu, Department of Information Processing Science

P.O. Box 3000, FIN-90401 Oulu, FINLAND

Abstract
The differences between user- and system-centered design practice have been
discussed broadly in the literature for a long period. The value of user-centredness
has even been taken for granted occasionally, though there is clear evidence
implying that broader participation of users should be evaluated relative to the
situation in hand. In this paper, both user- and system-centered conducting of a
design is studied with respect to how to behave in different roles. The core idea is
that user- and system-centredness are needed in different phases of a design. The
main problem is the proper role orientation in user-centered design. Change
agentry models are used as a framework. As a result of this study, a proper role
orientation in both system-centered and, especially, user-centered design is
suggested.

Keywords: user-centredness, system-centredness, participatory design, role orientations

BRT Keywords: AA, FA, FB

Introduction

There has been active debate on whether paying attention to more human-centered and
context-dependent participatory design yields benefits of high degree. Researchers have
discussed participatory design abundantly in the literature. For example, Ehn (1993)
discussed participatory design from the Scandinavian viewpoint, referring to a number of
Scandinavian research projects. Greenbaum (1993) considered user-centered design as a
philosophy, thus being difficult to apply, whereas participatory or cooperative design was
seen as less adverse with respect to its applicability. Participatory design, if modified
appropriately, can be applied even outside Scandinavia according to the view of
Greenbaum (1993). Nevertheless, an understanding of how participatory design relates to
user-centered design lacks thorough clarity of the differences. Bannon (1991) argues that
user-centered design as a concept might as well be understood only as a demand,
intended to software engineers, to know users, not as a design approach to promote the
active participation of users to design process. Bannon (1991) would use the term user-
involved design instead of user-centered design since it lets one to better grasp, what it is
all about, when users are involved in a design process. This paper, however, does not try
to contribute to discussion related to concepts. Postulating that both of these terms refer
to the same definition is preferred. Focusing attention to the gap between system-centered
way of undertaking design and user-centredness is stressed strongly in this study.

The gap between the contrary approaches is real but it needs not to be a factor
having negative impacts. System-centered way of developing information systems is
emphasized frequently. Transition from current practice to user-centered way of
undertaking design is realized frequently by increasing the weight of user involvement to
some extent, likely in a requirements gathering phase. In this paper, the weight given to
user-centered approach is equal to that of system-centredness. Clausen (1994) illustrates
how communication artifacts used by a designer depend on who s/he communicates to.
Designer should talk about a design in a different way, depending on the other person - is
s/he a programmer, another designer or a prospective user? The corresponding means of
communication are, in same order, formal presentations, structured language, and with a
user, either observation, histories, prototyping or scenarios. They can be used in
communication in the sense that they offer an understanding of how to behave according
to a situation. Clausen's remarks are important since they show how the opposite
approaches differ from each other with respect to how to communicate.

There are two important factors related to systems development: complexity and
uncertainty (Mathiassen et al. 1995; Dahlbom & Mathiassen 1993). It can be assumed
that they both are evident in any systems development project. However, another is likely
stressed more than the other, or in some cases they both can be in balance. Mathiassen et
al. (1995) stress that in specifying the focus is on dealing with complexity, whereas in
prototyping uncertainty is considered. Dahlbom & Mathiassen (1993) discuss
construction and evolution or analytical and prototyping approach as they refer to
complexity and uncertainty. These dichotomies presented provide a basis for this paper.

The research question of this paper is what kind of role orientation is suited for a
designer in user- and system-centered approaches or phases. The aim is to provide
designers with consciousness of how to act in different situations since a transition from
system-centredness to user-centredness requires support due to the oppositeness of the
approaches. Being conscious of a proper role orientation is important since a designer has
to change his/her role if there is a need for transition. Cognitive dissonance (Festinger
1957; Lindsay & Norman 1977) can be a consequence in a situation in which a software
engineer familiar with the principles of system-centered analysis and design is required to
adapt to user-centered way of conducting design. The theory of cognitive dissonance
implies incongruity between suddenly occurred state of affairs and the strong mental
model (Johnson-Laird 1985) of a person.

The framework for the study

More accurate definition of both "user-centredness" and "system-centredness" in a design
process (or a phase) must be provided since the main aspiration in this paper is to
increase designers' understanding of how design processes characterized in terms of user-
and system-centredness differ from each other. There is a need for pointing out the proper
background to be referred to in the context in which we emphasize user-centredness.
Participatory design (PD) is used as a background since it acknowledges users' central
role in a design process. Traditional practice concentrates especially on system-centered
modeling of internal structures and dynamics as well as implementation of a system
(referring to a coding phase), whereas participatory practices stress users' opportunities to
influence.

In the paper a short review of traditional and cooperative approach (Greenbaum
and Kyng 1991) will be brought out to explain the biggest discrepancies of user-

centredness compared to traditional system-centredness. A couple of PD principles
(Greenbaum 1993b) will be introduced to describe PD as broadly as possible, however,
without forgetting to depict it in brief.

It is possible to concentrate on the approach as the whole that is either user- or
system-centered according to a situation, or alternatively, this whole can be divided into
the distinct phases, having either user- or system-centered nature. Each of the methods
used in systems development should have its user- and system-centered characteristics. In
order to illustrate this point of view, a set of such phases is later identified. They are,
however, only thoughts picked up from the literature, recognized to be of great value.
Nevertheless, there is no aim to propose any specific characteristics since it would require
further studies. In this paper, Contextual Inquiry (Beyer & Holtzblatt 1998), cooperative
prototyping (Sanderson 1996; Bødker & Grønbæk 1996) and usability evaluation (Rubin
1994) are recognized to be useful for the purpose of user-centered design.

The role orientations of the change agent models (Markus & Benjamin 1996),
intended to touch a work done in an organization's internal IS unit, will be applied to the
context in which designers are outsiders to a user organization. To give a definition for
the concept of role orientation, it is referred to Markus and Benjamin (1996) who offer
the following definition: Role orientation includes both attitudes along with beliefs and
concrete behavior of a person. Each of the role orientations of the change agent models
will be reflected to what is said about concentrating on either users or systems.
Consequently, conclusions will be drawn regarding what kind of role orientation is
suitable in situations having different natures. The role orientations presented by Markus
and Benjamin (1996) were chosen since they cover utmost and opposite role orientations.
In addition to the role orientations, some structural conditions (Markus and Benjamin
1996) are applied, so that it could be possible to say how a transition to a desired role
orientation can be facilitated. The assumption is that if the required structural conditions
take effect, it is easier to strive for the corresponding role orientation.

User- and system-centredness

Even though the participation of users is widely preferred in the PD literature, an inherent
contradiction persists between user- and system-centered ways of thinking. This can be
observed by investigating the systems design literature. Both the community of PD
practices and the system-oriented community too readily ignores the viewpoint of the
other. Hard systems thinking is a normal way of thinking in natural sciences, as stated by
Dahlbom and Mathiassen (1993). It has also intruded upon systems development
conducted nowadays. According to hard systems thinking the focus is on the internal
structures of a system. A system itself is torn apart from its natural context. Moreover, a
means of getting rid of complexity, related to the world, is to divide a system into its
subsystems and further into its properties. The previous fact poses it is natural that there
is no aspiration for broader participation of users. Participation would increase a quantity
of complexity. As opposed to hard systems thinking, there is soft systems thinking
(Dahlbom and Mathiassen 1993) covering the opposite area, user-centredness, denoting
that people can be seen as constructors building the surrounding world by perceiving their
environment.

However, there seems to be an ongoing change in the direction of approving of
more user-centered practices and methods. Regardless of the ongoing change in attitudes
to involve users more actively (Contextual Design in theory: Beyer and Holtzblatt 1998.

Contextual Design in practice: Cleary 1999), there is still a need for bringing user- and
system-centered approaches closer to each other, so that they could be treated easier
within the confines of a common method. One possible way of doing this is to increase
designers' understanding of how to behave in a role of designer, as involved in a user or
system-centered process, and especially, either in a user- or system-centered phase of a
systems development process. The assumption is that it is not a good practice to carry out
design only according to system-centered hard systems thinking. Both kinds of phases
must be incorporated in whatever design process conducted by professionals. In this
section, emphasis is directed on participatory practices so that it could be possible to say
something concrete about user-centredness in practice. During the next subsection this
understanding will be deepened and some examples will be offered to illustrate both user-
and system-centered systems development phases. System-centered phases do not
achieve great emphasis here with respect to their characteristics. Henceforth, system-
centredness can be alluded by comparing it to hard systems thinking.

Table 1: Traditional vs. Cooperative approach

Traditional approach

focus is on:

Cooperative approach

focus is on:

problems situations and breakdowns
information flow social relationships
tasks knowledge
describable skills tacit skills
expert rules mutual competencies
individuals group interaction
rule-based procedures experience-based work

Greenbaum and Kyng (1991) contrast how traditional and participatory or cooperative
approaches differ from each other. Consequently, they illustrate the main differences,
presented here in table 1 in their original shape. Traditional way of conducting design
seems to be strongly characterized by small-scaled and explicitly treatable things,
whereas in cooperative approaches emphasis is on broader questions and things that can
be considered implicit or tacit. Software engineers who stick to 'guidelines' of a
traditional system-centredness valuate separate problems and tasks, formal rules and
individuals highly, compared to cooperative approach in which designers valuate
situations, relationships and group interactions to be of higher significance. It can be said
that there is a prominent gap between the two.

Briefing to the basics of participatory design

Participatory design is a manifestation of what is understood by active participation of
prospective users of a system being designed. Participatory design can be studied with
respect to its ability to deal with questions related to either individuals in collaboration,
individuals relative to product quality or even the whole micro-community (i.e. groups of
people in collaboration interorganizationally). Product quality as a concept in the sense
presented by Greenbaum (1993b) is intended to cover both the quality of a software, a
product (whatever it is) and a broader service provided for customers.

In order to brief readers to participatory design and user-centered thinking, the
perspectives presented by Greenbaum (1993b) are introduced. They are a pragmatic, a
theoretical and a political perspective, being sufficient in pointing out the most significant
themes of participatory design. However, they are too complex as self-explanatory and
clarifying concepts. Therefore, they are called a viewpoint of software and services, a
viewpoint of employees and a viewpoint of work community. These terms can hardly be
misunderstood.

Viewpoints of participatory design

According to a viewpoint of software and services, both software engineers, executives
and middle managers are able to gain benefits. In order to profit from PD, software
engineers and managers have to emphasize participation of prospective users extensively
and use appropriate artifacts and techniques capable of facilitating developer-user
communication. Software engineers using artifacts and techniques (e.g. cooperative
prototyping) are able to result in better software (also users can be assumed to be more
gratified to the outcomes) and managers in better overall quality of both products and
services. In this paper, it is useful to notice that the concept of software engineer has a
clear connotation, implying system-oriented attitude, whereas the concept of designer
poses more user-oriented stance.

From a viewpoint of employees, PD techniques are capable of mediating designs
to prospective users more effectively. Users conduct in a hands-on manner with the help
of these techniques. As a consequence, both future users and software engineers are able
to understand better each other. Prototype for example is one of the possible artifacts. Of
course, the properties of such an artifact are of high value, which is, however, another
question not considered in this paper at all.

The third of the viewpoints, a viewpoint of work community, refers to the
democratic organization of work community. Everyone has to be able to influence his/her
own work arrangements, including the development of needed technology. What was said
in the Collective Resource Approach (Ehn & Kyng 1987) about trade unions as active
parties in participation is not emphasized. Participatory design is understood here as a
design approach and it is seen only from the viewpoint of how design should be carried
out in conjunction with users. Tendency in general seems to be in the same direction
today as Bansler and Kraft (1994) state. They noticed this approach to be concentrated
nowadays on design as such, rather than political questions with respect to establishing
democratic work organization. There is no interest here to connect this viewpoint of
design to how this prerequisite, a design context, can be achieved. However, as Bansler
and Kraft (1994) submitted, we should try to strive for a new policy underlining the
current needs, being a problem not included to the scope of this paper.

There is a condition that says there have to be appropriate circumstances to allow
users to participate in design process. So far there has not been shared acceptance of
whether the Collective Resource Approach in its original and very-cutting sense can
bring about change in design situations and facilitate the introduction of participative
practices (Kraft & Bansler 1994; Kyng 1994). There are numerous obstacles confronted
by the approach, enumerated by Kraft and Bansler (1994). For example lack of resources
(knowledge and time) was reported to be the problem along with the problems related to
the broader applicability of the approach (Kraft & Bansler 1994). Trade unions clearly
serve as a channel to advocate more democratic situations in which users can take part in
the development of the organization of their work and in the introduction of tools to be

used in this work. Regardless of ignoring this how-to-get-there, democracy is recognized
to be an important factor in any systems development process. Moreover, MIS
researchers (Hartwick & Barki 1994; McKeen et al. 1994), by conducting empirical
studies, have questioned the significance of participation as a sole factor having effects
on successfulness of a system. Participation was demonstrated to have a positive impact
on user satisfaction (McKeen et al 1994). However, McKeen et al. (1994) also
demonstrate that user satisfaction can be achieved without active participation. They
showed situational factors to be the mediating variables capable of influencing user
satisfaction. Conclusions can be drawn to say that in addition to taking the participatory
principles into account, also situational factors should be considered.

First two of the viewpoints describe what kind of approach participatory design is
at the end of the 20th century. Nevertheless, the last viewpoint cannot be underestimated
since users possess right to influence design decisions regarding themselves. These three
viewpoints together served as a basis while the corresponding role orientation was
developed for user-oriented designers. Due to the problems identified above, there is a
strong rationale for studying role orientations.

Examples of user-centered design

Participatory design is not a method but a set of design principles (or statements)
presented in Ehn and Kyng (1987). They can be enumerated briefly as follows: 1) use
context should be taken into account, 2) users know their work better than designers, 3)
formal presentations are not enough, 4) jobs are not allowed to be impoverished and 5)
tools should be used in a hands-on manner. The principles of participatory design can be
seen as an umbrella covering different possible ways to contribute to a user-centered
design process. Design process is here regarded as a user-centered one if there is at least a
user-centered initial phase on which the rest of the phases of a design process are tightly
based. However, there can be user-centered phases in the middle of or in the end of the
design process. Even though designers can contribute to a design process by means of
user-centered tools, methods and practices, the principles of participatory design appear
one way or another in a way of how designers act. Generally speaking, participatory
design can take shapes of different sort. Contextual Inquiry, cooperative design and
usability evaluation are depicted in the following section as possible ways to contribute to
a design process in a user-centered way.

Contextual Inquiry is a user-centered phase of Contextual Design method (Beyer
& Holtzblatt 1998). The core idea of Contextual Inquiry is to require designers to aim at
good contacts in a user organization. This is to say that they should be ready to engage in
an active observation of users, wherever users' work takes place. Users are in a focal
point of action in Contextual Inquiry since they are allowed immediately to comment on
what they are doing in parallel with conducting real work tasks. Designers can in turn set
questions to be answered. Hereby, users are provided with a chance to influence the
design of computer tools. Simonsen and Kensing (1994) also encourage designers to
observe users in real work situations since by doing that it is possible to create a mutual
learning situation between the parties and to catch multiple viewpoints of different users.

Cooperative prototyping as a user-centered approach, described for instance by
Bødker and Grønbæk (1996), is based on user-centredness. In cooperative prototyping
users take part in the evaluation sessions of a future system prototype in circumstances
resembling their real work situations. In this approach users evaluate alternatives so that

they are able to offer designers proposals for refinements, regarding the design of a future
system (Bødker and Grønbæk 1996). Cooperative prototyping is a means of conducting
evaluations when there are only tentative proposals envisioned. Bødker and Grønbæk
(1996) identified several learning situations wherein prototypes play central role: future
work simulations, idea exploration and making a current work visible. Cooperative
prototyping lays focus on the work context as well as the functionality of a system.
Design proposals can be realized for example as mock-ups, computer-based simulations
or storyboard prototypes (Bødker and Grønbæk 1996).

Usability evaluation is also a user-centered way of contributing to a design
process. Due to the ambiguousness of this concept, there are several interpretations that
clearly need clarification. Normally this term is divided into the two categories being
usability testing and usability inspection. Moreover, it may bewilder a reader that indeed
the concept of usability testing and cooperative prototyping can readily be added one to
the other since the both emphasize the central role of a user as a person who evaluates
'systems' being in question. Usability testing is defined in terms of observation of a user
whereas usability inspection is based on evaluation accomplished by designers
themselves by means of either introspection or a set of heuristics. Usability testing and
cooperative prototyping on the other hand do not differ from each other but in this paper
a distinction is suggested. Cooperative prototyping is a technique to be utilized in the
phases in which only tentative ideas exist to be evaluated whether they meet the
requirements of a work situation i.e. whether envisioned design fits the intended use
context. Bødker and Grønbæk (1996) state that conversations between user(s) and
designer(s) occur frequently in cooperative prototyping sessions. Based on this statement
it is clear that cooperative prototyping and usability testing conducted at the lab differ in
terms of uni- or bidirectional communication. In usability testing facilitators guide users
only prudently. As opposed to cooperative prototyping, usability testing is supposed to be
a technique intended to the assessment of relatively frozen and already concretized and
tangible design ideas, paying attention to the polishing of functional prototypes. This may
be rather artificial distinction but it brings about needed clarity between the confusing
concepts.

Presenting role orientations as a part of user-centered
and system-centered design

In this chapter the aim is to study the models of change agentry (Markus & Benjamin
1996) in order to construct an insight into what kind of roles designers or software
engineers play both in user- and system-centered phase. However, the models were not
evaluated despite their possible shortcomings. The models were adopted as they are.
They were used as a means of identifying role orientations suited for designers or
software engineers in user- and system-centered phases of an anonymous and imaginary
systems development method. They were applied loosely since they originally described
role orientations of designers or software engineers in an organization's internal IS unit.
For example, clients can be seen as users and IS specialists can be seen as designers.
Nevertheless, there are no obstacles in order to apply them to the context in which
designers belong to an independent service provider organization. Even though the
models heavily focused on designers' ability to change, they were only used to describe
how designers stance towards users.

Markus and Benjamin (1996) introduced three change agentry models. They have
been adopted for this study in order to inquire into what kind of roles software engineers
play when they are hired to join user- or system-centered design (phase) or in both kind
of design phases to conduct requirements gathering, prototyping or systems design. The
other supplementary or even underlying question is whether software engineers have an
important role as an influencing power or whether users play more important role in
underlining what should be decided on with regard to a design target (being either a
system internally or its use situations and properties). Presumably this depends on what
kind of design phase is in question.

The models of change agentry being used are the traditional IS model, the
facilitator model and the advocate model. To be able to discuss what it means to be a
software engineer who adheres either to user- or system-centered design, it is required to
study whether user- or system-centredness directs software engineers to some role
orientation. On the other hand this denotes equivalent to the question asking whether
some of the structural conditions of the change agentry models might exist in user- and
system-centered design. Moreover, it is important to study whether software engineers’
roles in certain design situations reflect typical characteristics found in the role
orientations of the change agent models. To answer the former question, the structural
conditions of each model will be compared to the corresponding ones considered
important in user- and system-centered design (phase). In order to answer the latter
question, the relevance of the role orientation of each model will be compared to the role
orientation suggested in user- and system-centredness.

The traditional IS model as a model in design

To study the applicability of the traditional IS model, the structural conditions compatible
with role orientation and the relevance of the role orientation will be compared to the
evident structural characteristics of user- and system-centered design phases and to the
role orientation suggested in these phases. The role orientation of this change agentry
model has been reformed so that it corresponds to a context wherein the aim is not to
study organizational change process but the interaction of two parties, prospective users
and designers.

The structural conditions of the traditional IS model

Markus and Benjamin (1996) suggest a set of structural conditions that should take effect
before the application. After introducing the conditions they will be considered precisely
by comparing to nearly opposite design approaches (design phases) defined in terms of
user- and system-centredness. The structural conditions of the model can be listed as
follows.

1. Software engineers are the sole providers of IS services.
2. Users are provided with a restricted quantity of different alternatives.
3. There is no external competition in an environment where service providers operate

in order to produce services to a user organization.
4. Software engineers are accountable for supplying IS solutions to users within the

confines of budget and predefined schedule and they have to work in a centralized
organization.

5. The structure of an organization has to be hierarchical and given orders should

move downwards from top management to operational level. The main reason for
giving orders to subordinates is to fulfill the business goals.

It is decided to start with considering the existence of five structural conditions as
relevant initial conditions in user-centered phases of an imaginary design approach.
Designers of a given organization are not the sole providers of IS services since users are
able to choose the service provider they rely on. Originally this condition was aimed at
taking effect inside an organization. Consequently, it does not fit the environment
wherein markets are free. Moreover, in user-centered design designers do not tend to
limit a number of different alternative ideas. One possible technique such as cooperative
prototyping deliberately requires designers to offer vast quantities of mutually exclusive
alternatives to users who are the proper persons to accomplish evaluations. Users can
then pick up the best possible ones from this set. Designers or IS providers have to vie for
the best favor in the eyes of potential consumers. The best possible service surely yields
the best possible loyalty in the long range.

The structure of an IS organization has to be flat one as opposed to the structure
of a bureaucratic organization (Laudon & Laudon 1996) if a user-centered approach to
systems development is approved. It should preferably resemble the structure of the
organization of adhocracy type (Laudon & Laudon 1996). Some structural outlines can
be derived, for example, from Business Process Reengineering approach (Hammer &
Champy 1993). Process teams or virtual teams (Hammer & Champy 1993) established to
live only as long as needed to accomplish a given task are able to better concentrate on
users' needs since there is more decision power directed to them. Designers in this kind of
an IS organization take actively heed of the opinions of users, instead of obeying the
orders of either line managers or operational managers. However, contracts and budgets
cannot be totally ignored, even though there is more flexibility than in large
bureaucracies. Designers are responsible for fulfilling the contracts and they also have to
report on progress upwards in organization's relatively flat hierarchy.

Discussion demonstrates us that a large gap exists between the structural
conditions presented in the traditional IS model and the conditions implicitly suggested in
user-centered design. Evidently, conclusions can be drawn to say that the presented
conditions do not direct designers to the role orientation of the traditional IS model. The
different nature of competition has to be taken into account. The first and the third listed
conditions are not explicitly suited for the comparison between two. However, the other
items can be adopted for the context of external service providers.

Next the focus is on system-centered design phases. Neither the first nor the third
condition is considered since they do not fit the situation. Users are provided with a
limited number of different choices being equivalent to what is said in the second
condition. There is no need for participation since software engineers have technical
capabilities required to tailor the best possible solution regarding the internal structures
and dynamics of a system. The rest of the listed items, namely, the fourth and the fifth are
not so self-explanatory and they require additional elaboration with respect to their
relevance as structural conditions in system-centered design phase. Centralization
presented in the fourth condition is a characteristic not suited for the situation since the
context is not an internal IS unit of an organization. Flexibility is not needed in fulfilling
the requirements of schedules and budgets. Designing a system to behave in a certain way
is easier than to fulfill the needs of future users. Consequently, schedules and budgets can
be predicted easier, as was implied in hard systems thinking. The structure of an
organization does not have to be a flat one since the job of software engineers is based on

what is required to implement. Someone else is responsible for carrying out requirements
gathering. There is a prominent reason for why line managers or operational managers
should intervene to technological decision making of software engineers. Superiors
control that a team of software engineers designs and constructs a system according to
what was required by the future users.

Discussion clearly points out that in system-centered design phase the structural
conditions of the traditional IS model are more relevant than in user-centered design
phase, even though there are a couple of structural conditions found not to be of
significant nature. The most relevant conditions found to be valuable in system-centered
phase are 2, 4 and 5. The first and the third conditions are not suited for the selected
context. Moreover, the concept of centralization in the fourth condition does not fit the
context. However, discussion points out that the structural conditions (2, 4 and 5) direct
software engineers strongly to the role orientation of the traditional IS model.

The traditional role orientation

IS specialists familiar with the role orientation of the traditional IS model can be
characterized in terms of technical expertise and individuality of performance with no
responsibility related to organizational change process. These two qualifications imply
that software engineers of this kind ignore use situations. According to the model, IS
specialists comply with the orders of operational managers without questioning the
acceptability of the orders. Thus they are seen as persons motivated by the goals of the
others. IS specialists consider technology to be the power capable of altering
organizational structures, working procedures and even organizational culture. However,
according to the insight of system-centered software engineers, they have only an
obligation to build solutions to given problems without taking any responsibility for the
consequences appearing in an organization wherein the technology is used. Software
engineers having role orientation of this type are called lonely riders in this paper.
(Markus & Benjamin 1996)

User-oriented attitude cannot be based on the above-mentioned traditional role
orientation model. Designers cannot consider technology to be the changing power if they
acknowledge that users know their own work best. Neither can they rely on formality of
technology nor act as persons who do not take part in a mutual learning process in
conjunction with user representatives. They cannot be motivated by what the superiors
say but they should be present as users participate. As opposed to the traditional role
orientation, user-centered designers should not emphasize technological problems but be
conscious of use situations and breakdowns occurring. Based on what was said in hard
systems thinking, the traditional role orientation seems to be suited for software engineers
with system-centered stance.

The facilitator model as a model in design

The facilitator model enables to study user- and system-centredness from the other
utmost viewpoint, compared to the traditional IS model. There are lots of similarities
compared to the way of how consultants of an external service provider enterprise consult
clients. Since this model fits the decentralized environment, the structural conditions are
more favorable to use, relative to the ones of the traditional IS model. Though the
structural conditions ought to be used in the context of IS unit having departments of a
same organization as clients, the interaction between designers and users can be looked at

on the same basis. Rather than regarding the conditions of the model as structural
characteristics, three fourths of them ought to be seen as qualifications of a role
orientation.

The structural conditions of the facilitator model

Markus and Benjamin (1996) brought out four structural conditions in the facilitator
model. They can be listed briefly as follows. 1) Software engineers should not use their
technical competence. 2) They have to be outsiders to a user organization (this is the only
one regarded here as a structural condition). 3) Software engineers as facilitators do not
have to be responsible for questions related to business. 4) There cannot be hierarchical
authority over users. These conditions are rather self-explanatory, and due to this, they
will not be elaborated. However, they are compared to user- and system-centered design
phase. Clearly they are reverse to the structural conditions of the traditional IS model.
This oppositeness is one of the possible reasons for why it can be difficult to software
engineers to embrace user-orientation.

Software engineers possess a vast amount of technical competence, but in user-
centered design phases they are not allowed to use it. Designers strive for increasing
users' capabilities to make decisions, with respect to their organization and information
systems used in their work tasks. The facilitator model considers users as persons capable
of selecting and even building technical solutions, whereas in system-centered phase
software engineers are in charge of system-oriented modeling and construction of an
information system.

Designers cannot be the employees of an organization they are hired to serve in
user-centered design. This is required since outsiders as neutral participants intervening
to a user organization can observe users objectively. However, being either an outsider or
an insider is not a critical question in system-centered design. Actions of a lonely rider
are based on what the others have already decided. It is supposed here that requirements
gathering should, of course, be a user-centered phase.

Contracts should not be blindly complied with in user-centered design since
requirements set in advance hardly correspond with what is achieved as a result of a user-
centered and iterative design approach. This implies that user-centredness is best suited
for the design conducted in a flat organization wherein there is flexibility to fulfill what is
said in contracts. However, there are things such as schedules and budgets that cannot be
wholly ignored. Self-directing teams dealing with process-oriented work (Hammer and
Champy 1993) can be seen as a good basis for a user-centered design situation.
Consequently, designers are responsible for business goals to themselves instead of
managers. As opposed to facilitators, software engineers as lonely riders act as persons
dependent on decisions made by someone else. The role of them is clearly the opposite
compared to that of facilitators.

Designers can't appeal to their authority over clients in user-centered design with
respect to defining what the functionality of a system should be. They should always take
users' opinions into account, for example, during each iteration time of gathering
requirements in cooperative prototyping. Neither can they regard users as inferior to them
in any user-centered phase, even though they have technical authority over users in
system-centered phases. Having technical competence implies that users do not need to
take part, for example, in the modeling phase of a system.

Conclusions can be drawn with respect to the structural conditions. Briefly
depicted it can be said that the structural conditions direct designers strongly to the role

orientation of the facilitator model in user-centered phases, whereas in system-centered
phases software engineers embrace the traditional IS model. The second condition is not
a significant one with respect to whether the structural conditions of the facilitator model
direct designers or software engineers to the corresponding role orientation in user- and
system-centered design phases. The conditions 1, 3 and 4 clearly direct user-oriented
designers to the facilitator role orientation, whereas the conditions 1, 3 and 4 differ from
the corresponding ones of system-centered design.

The facilitator role orientation

The worldview of the traditional IS model seems to be clearly technology-oriented,
whereas the role orientation of the facilitator model is in favor of human-centered
viewpoint to design process. Human beings and in this case users are in charge of
change, neither technology nor designers as change agents. In accordance with this
human-centered stance technology can be seen as a tool used by users in the reformed
circumstances of an organization. Facilitators as consultants advise users of how to get
literally rid of the dependence on designers. To be able to make own decisions, users
need a great number of design proposals suggested by designers. The main purpose is to
increase users' capabilities to create joint insights of the subjective thoughts of each
person. Rather than providing technological solutions, designers as facilitators should
inform users of how to build systems and how to make common choices.

The biggest discrepancy between the role orientation of the facilitator model and
the role orientation of user-oriented designers is an attitude on the implementation of a
system. Facilitators regard users as implementers, whereas user-centredness does not aim
at contributing to the implementation of a system at all. User-centered phases establish a
basis to be utilized later during a development process in system-centered design phases.
Then the aim is for example to define how the objects of a system collaborate with one
another and how messages move between the objects. In cooperative prototyping sessions
users are in a focal point of action. Designers are not permitted to recommend any
technical solutions, but they have to provide users with appropriate presentations
describing how the requirements of users could be incorporated in a future system.

It is suggested here that there should be a shared responsibility of users and
designers for the results in user-centered phases. Though decision power is channeled to
users in quantity, software engineers reserve a right to model and implement a system.
Evidently, software engineers are capable of making technical decisions. Users are vice
versa more capable of saying what a good solution is. The core idea is that the
construction of a system per se is not a development phase to alter the structures of a
work community. Responding to questions related to the re-organization of work tasks is
appropriate earlier in a phase that is a user-centered one.

Finally conclusions can be drawn with respect to the role orientation of the
facilitator model. The facilitator role orientation is consistent with the role orientation
being suited for user-oriented designers. However, there is a big difference with respect
to responsibility. User-centredness requires both of the parties, designers and users,
involved in the design process of a new system to take a shared responsibility for the
results, which is not consistent with what was required in the facilitator model. The
facilitator role orientation does not fit the system-centered design in any sense since the
facilitator role orientation and the role orientation of lonely riders totally contradict. Each
of the presented constituents of the facilitator role orientation is from the opposite edge of
the scale compared to the role orientation of lonely riders.

The advocate model as a model in design

The third of the models, the advocate model, is used in order to supplement the
description of the roles software engineers or designers play, while they are developing a
system in both user- and system-centered phase. Even though the advocate model does
not share any characteristics with above-mentioned two other models, it is situated in the
middle of the traditional IS model and the facilitator model. However, it is located a bit
further from the center point of the traditional IS model and the facilitator model. Picture
1 illustrates how the models lie on the opposite edges relative to one another. Symbols in
the picture have the following meanings. Interrogative mark symbolizes decision making
process and responsibility. Arrows symbolize the direction of proposals. Human being
figures have been set in the next order: Software engineers or designers are on the left
side, whereas users can be found on the right side of the software engineer.

$GY�

7UDG�)DF�

user-centredness

system-centredness

organization-
 centredness

Picture 1: Three types of 'centredness'

The advocate model as applied to systems development is a means of attaining the goals
of an organization. It is thus a way to promote the strategy defined by the strategic
management of an organization. The concept of organization-centredness can be used to
point out the nature of it. Consequently, it does not fit the phases in which the emphasis
is on systems (system-centered phases). Information systems are a part of an
organization, even a very significant section. However, it is not wrong to divide them into
the distinct parts: information systems and organizations infrastructure. The aim of the
distinction is to point out that systems building (construction of a system comprising both
modeling and coding) should not be a phase having effects on the reengineering of the
structure of an organization or the re-form of work tasks of employees. Due to this the
model will not be applied to system-centered phases.

The advocate model provides quite a heterogeneous set of structural conditions,
as stated by Markus and Benjamin (1996), compared to the traditional model and the

facilitator model. The model regards software engineers as superior to users, not from
technical point of view, but since they think they know better than users what the proper
choice or strategy is. Markus & Benjamin (1996) articulated this point as follows: "Users
don’t know what they want, and what they want is not what they need".

The structural conditions of the advocate model

Markus and Benjamin (1996) enumerated three structural conditions being somewhat
paradoxical compared to the worldview of the model. Therefore these conditions are here
suggested to be mutually exclusive. They can be listed as follows.

• Software engineers as advocates do not use authority over their users since
they have not been delegated power to control. They are able to dispense
valuable resources.

• Alternatively they can be considered line managers with an appropriate
quantity of authority, and therefore they are accountable for achieving
business returns.

• Also they could be seen as peers compared to operational employees, and
according to this view both advocates and future users are the employees of a
same organization.

The first condition can be elaborated by saying that dispensed resources comprise funds,
equipment, advice and positive regard. Nevertheless, there is a problem with respect to
this condition. Software engineers having no authority are not capable of advocating their
solutions effectively, which means that software engineers cannot persuade users to
accept presented ideas. The second condition needs no additional elaboration. Supremacy
makes it possible to advocate proposals efficiently. However, there is a problem found to
be an evident part of this condition. Ideas being not one's own are easily resisted,
especially if any rationales have not been pointed out. Therefore in conjunction with this
condition, the importance of commitment should be considered, as Markus and Benjamin
(1996) mention. Regardless of questions related to acceptability, this condition is
suggested here to be the best one in aiming at successful applying of the model. The
approval of this condition indicates, by no means, that the model per se would be the best
possible one. Being an advocate of the third type suffers from a problem regarding power
relations of employees. If one of the employees at the operational level of an organization
acts as an advocate being superior to the others, lack of legitimacy appears to be strong
among the employees. This in turn hinders the concretization of decisions. It can be
assumed that the best possible advocates come from an external service provider
organization. As was demonstrated, each of the conditions clearly carries a built-in
restriction.

The second condition cannot be considered a basis on which user-centered design
can be established. Cooperation between users and designers cannot be based on the
strong authority of designers. Neither is the third condition a relevant one since in this
paper the context requires designers to come from a separate service provider enterprise.
The first condition saying it is appropriate to dispense resources is a suitable condition in
user-centered design. According to this condition, designers do not possess authority.
Designers have to provide users with information, equipment etc. in user-centered design.
Nevertheless, the condition does not direct designers to the role orientation of the
advocate model, which is due to the nature of the model: Advocates should be able to use

power to persuade users. The second condition would have directed advocates to the
corresponding role orientation. Nevertheless, it would not be a suitable one to be
consistent with user-centredness.

The advocate role orientation

Software engineers are characterized in accordance with the advocate role orientation in
terms of qualifications presented next. Advocates are required (presumably by the top
management of an organization) to direct users to a desired goal by means of
communication, persuasion and the use of exciting future visions, even shocking,
manipulating and using the power to some extent. Using the power implies the
legitimized authority of software engineers. Advocate regards users as persons who do
not know what they need. In some cases, they can ignore users who resist advocated
change, and as opposed to this, they can offer rewards to users in order to achieve desired
goal supposed to be the best possible one. Advocate thinks that anything goes. If users
won't commit to the proposed strategy, advocate will give up. The importance of a mutual
commitment should be recognized in case of the application of the advocate model.

Technological artifact as such cannot be considered end but it should have to do
with implementing the preferences of the users in question. This is an underlying
assumption in user-centered way of thinking. Technological solutions should not define a
use situation but vice versa a use situation should determine how the technology should
function to fit the situation where it is used. The technological choices implemented in a
system by lonely riders should be as hidden as they optimally can be in a use situation.
Software engineers should stress to what extent they unintentionally, or even deliberately,
manipulate users to favor their proposals while they provide users with the sketches of a
design for example in cooperative prototyping. In user-centered phases, users participate
in decision-making process regarding questions of the use of a system being developed
for their needs. The advocate role orientation supports participation by laying stress on
the shared responsibility of participants. Nevertheless, the procedures applied and
committed to by advocates are not suited for user-centered design.

Obviously, we can conclude that the traditional IS model as a whole is eligible for
the basis of the role orientation of system-oriented designers, whereas user-centered
design practices require speciality of different sort to characterize the behavior of a
corresponding designer. By blending together qualifications of facilitators and advocates,
it is possible to determine an appropriate role orientation for designers favoring the
principles of user-centredness. Majority of the specific qualities of facilitators fit the user-
oriented designers, apart from an aspiration to get rid of the responsibility for outcomes.
The role orientation of user-oriented designers has to be added to with a requirement to
share responsibility jointly with users. Shared responsibility originated in the advocate
role orientation. It is the only qualification of the model to be applied by designers
favoring the principles of user-centredness.

Conclusions

The main contribution of this work was to gather a coherent understanding with respect
to how software engineers or designers act according to a situation (either user- or
system-centered) by taking situational roles of either lonely riders, facilitators or
advocates. User- and system-centredness were found out to be approaches having

different models of thinking (soft and hard systems thinking). Moreover, they greatly
differ in reference to how software engineers or designers conceive the work, including
tools, procedures, attitudes and beliefs. The traditional role orientation is here pointed out
to be an eligible role interpretation for system-oriented software engineers. On the
contrary, user-oriented designers, however, are deliberately urged to consider facilitator
role orientation as a suitable one. Needless to say again, they should not underrate an
obvious importance of shared responsibility, while they collaborate tightly with users to
catch design ideas of users to be integrated in a system. Prominently, each of the models
of role orientation promotes the interest of a different group, either consisting of software
engineers, user representatives or managers. Lonely riders, in essence, aim at self-interest,
although they, of course, serve also the goals of users, as a consequence of fulfilling their
own self-interest. On the contrary, facilitators work for the goals of users, whereas
advocates in turn emphasize decisions made by strategic management.

The practical importance of this study culminates in providing an understanding
of how designers applying the principles of user-centredness can be supported by offering
consciousness with respect to the role orientation seen as a proper one in user-centered
design. On the basis of this paper we can assume that an awareness of the role orientation
of the facilitator model weakens the negative impacts of problems related to the transition
from system-centered to user-centered design. It is likely that in a very small
development organization only a few persons take part in each phase of systems
development. In the context of these enterprises, provided knowledge can be of great
value since a same person should change one's role orientation, if a transition from user-
centredness to systems construction or vice versa is undertaken. Since there is a large gap
between the traditional IS model and the facilitator model, as depicted in picture 1,
software engineers need support. Prior to trying to support designers with a set of tools,
as well as proper practices and even a method, there first has to be an appropriate insight
into how to act in different situations. This paper focused on the former problem related
to the qualifications of designers.

Proposals provided in this paper are suggested to be applicable for how designers
could conceive their role in a situation where they follow the principles of user-
centredness. Further studies should, however, be conducted in the future to point out it
more comprehensively that the facilitator role orientation with certain reservations is the
best possible one in guiding designers in user-centered design. This poses a need for
carrying out additional literature-based investigations. In addition, there shall be further
studies related to the role orientation of designers who carry out distributed participatory
design in a geographically distributed environment. Moreover, as a research topic of
future studies will be a question such as, whether tool-based support and related practice
in a geographically distributed design situation can provide appropriate help.

References

Bannon, L. 1991. From Human Factors to Human Actors: The Role of Psychology and
Human-Computer Interaction Studies in System Design. In Greenbaum, J. & Kyng,
M. (eds.). Design at Work: Cooperative Design of Computer Systems. Hillsdale
(N.J.): Lawrence Erlbaum, pp. 25-44.

Bansler, J. P. & Kraft, P. 1994. Privilege and Invisibility in the New Work Order: A reply
to Kyng. Scandinavian Journal of Information Systems, Vol.6 (1994), No.1, pp. 97-
106.

Beyer, H. & Holtzblatt, K. 1998. Contextual Design: Defining Customer-Centered
Systems. San Francisco (Calif.): Morgan Kaufmann.

Bødker, S. & Grønbæk, K. 1996. Users and designers in mutual activity: An analysis of
cooperative activities in system design. In Engeström, Y & Middleton, D. (eds.).
Cognition and Communication at Work. Cambridge: Cambridge University Press,
pp. 130-158.

Clausen, H. 1994. Designing Computer Systems from a Human Perspective: The Use of
Narratives. Scandinavian Journal of Information Systems, Vol.6 (1994), No.2, pp.
43-58.

Cleary, T. 1999. Communicating Customer Information at Cabletron Systems, Inc..
Scandinavian Journal of Information Systems, Vol.VI (1999), No.1, pp. 44-49.

Dahlbom, B. & Mathiassen, L. 1993. Computers In Context - The philosophy and
Practice of Systems Design. Cambridge (Mass.): Blackwell Publishers.

Ehn, P. 1993. Scandinavian Design: On Participation and Skill. In Schuler, D. &
Namioka, A. (eds.). Participatory Design - Principles and Practices. Hillsdale
(N.J.): Lawrence Erlbaum, pp. 41-78.

Ehn, P. & Kyng, M. 1987. The collective Resource Approach to Systems Design. In
Bjerknes, G., Ehn, P. & Kyng, M. (eds.). Computers and Democracy. Aldershot:
Avebury, pp. 17-58.

Festinger, L. 1957. A theory of cognitive dissonance. New York: Harper.
Greenbaum, J. & Kyng, M. 1991. Introduction: Situated Design. In Greenbaum, J. &

Kyng, M. (eds.). Design at Work: Cooperative Design of Computer Systems.
Hillsdale (N.J.): Lawrence Erlbaum, pp. 1-24.

Greenbaum, J. 1993. A Design of One's Own: Towards Participatory Design in the
United States. In Schuler, D. & Namioka, A. (eds.). Participatory Design -
Principles and Practices. Hillsdale (N.J.): Lawrence Erlbaum, pp. 27-38.

Greenbaum, J. 1993b. PD: A personal Statement. Communications of the ACM, Vol.36
(1993), No.4, p. 47.

Hammer, M. & Champy, J. 1993. Reengineering the Corporation - A manifesto for
business revolution. London: Nicholas Brealey.

Hartwick, J. & Barki, H. 1994. Explaining the Role of User Participation in Information
System Use. Management Science, Vol.40 (1994), No.4, pp. 440-465.

Johnson-Laird, P. N. 1985. Mental Models. In Aitkenhead, A. M. & Slack, J. M. (eds.)
Issues in Cognitive Modeling. Hillsdale (N.J.): Lawrence Erlbaum in association
with The Open University, pp. 81-99.

Kraft, P. & Bansler, J. P. 1994. The Collective Resource Approach: The Scandinavian
Experience. Scandinavian Journal of Information Systems, Vol.6 (1994), No.1, pp.
71-84.

Kyng, M. 1994. Collective Resources Meets Puritanism. Scandinavian Journal of
Information Systems, Vol.6 (1994), No.1, pp. 85-96.

Laudon, K. C. & Laudon, J. P. 1996. Management Information Systems - Organization
and technology. New York: Macmillan.

Lindsay, P. H. & Norman, D. A. 1977. Human Information Processing - An Introduction
to Psychology. Orlando, Florida: Academic Press, Inc.

Markus, M. L. & Benjamin, R. I. 1996. Change Agentry - the Next IS Frontier. MIS
Quarterly, December 1996, pp. 385-407.

Mathiassen, L., Seewaldt, T. & Stage, J. 1995. Prototyping and Specifying: Principles
and Practices of a Mixed Approach. Scandinavian Journal of Information Systems,
Vol.7 (1995), No.1, pp. 55-72.

McKeen, J. D., Guimaraes, T. & Wetherbe, J. C. 1994. The Relationship Between User
Participation and User Satisfaction: An Investigation of Four Contingency Factors.
MIS Quarterly, Vol.18 (1994), No.4, pp. 427-449.

Rubin, J. 1994. Handbook of Usability Testing. New York : Wiley, cop.
Sanderson, D. 1996. Partial Success and Partial Failure in a Commercial Development

Project. In Blomberg, J., Kensing, F. & Dykstra-Erickson, E. (eds.). Proceedings of
the Participatory Design Conference PDC'96, 13-15 November 1996, Cambridge,
Massachusetts: USA, pp. 81-92.

Simonsen, J. & Kensing, F. 1994. Take Users Seriously, But Take a Deeper Look:
Organizational and Technical Effects from Designing with an Ethnographically
Inspired Approach. In Trigg, R., Anderson S. I. & Dykstra-Erickson, E. A. (eds.).
Proceedings of the Participatory Design Conference PDC'94, 27-28 October 1994,
Chapel Hill NC: USA, pp. 47-58.

